Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/661898 | DOI Listing |
J Environ Manage
January 2025
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
An important question in restoration ecology is whether restored ecological regimes are more vulnerable to transitions back to a degraded state. In woody-invaded grasslands, high-intensity fire can collapse woody plant communities and induce a shift back to a grass-dominated regime. Yet, legacies from woody-dominated regimes often persist and it remains unclear whether restored regimes are at heightened vulnerability to reinvasion.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, Rue Vauquelin, 75005, Paris, France.
The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFLangmuir
January 2025
Thermodynamik, Technische Universität Berlin, 10587 Berlin, Germany.
The binary collision of nanoscale droplets is studied with molecular dynamics simulation for droplets consisting of up to 2 × 10 molecules interacting via a truncated and shifted form of the Lennard-Jones potential. Considering head-on collisions of droplets with a temperature near the triple point that occur in a saturated vapor of the same fluid, this work explores a range of collision topologies. Four droplet sizes, with a radius ranging from 30 to 120 molecule diameters, are simulated with a varying initial relative collision velocity, covering 36 cases in total.
View Article and Find Full Text PDFNat Commun
January 2025
National Oceanography Centre, Southampton, UK.
Multiple tipping points in the Earth system could be triggered when global warming exceeds specific thresholds. However, the degree of their impact on the East Asian hydroclimate remains uncertain due to the lack of quantitative rainfall records. Here we present an ensemble reconstruction of East Asian summer monsoon (EASM) rainfall since the Last Glacial Maximum (LGM) using nine statistical and machine learning methods based on multi-proxy records from a maar lake in southern China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!