Recently, inorganic nanoparticles blended within polymeric membranes have shown improved antifouling performance in wastewater treatment. However, agglomeration of nanoparticles remains as one of the major obstacles for generating a uniform surface. In this study, a new method for in situ preparation of Al-containing PVDF ultrafiltration membranes to improve the dispersion of nanoparticles is reported. The strategy of this method is to combine sol-gel process with traditional immersion precipitation process. Al sol was synthesized by the addition of anionic exchange resin in N,N-dimethylformamide (DMF) solvent containing aluminum chloride. Homogeneous Al-containing PVDF casting solution was then obtained by dissolving PVDF polymer in the Al sol. The membrane formation mechanism was investigated by precipitation kinetics and morphology. Results indicate that the addition of Al species can accelerate phase inversion of casting solution. Scanning electron microscopic images show that a typical transition from sponge-like structure to finger-like structure occurred with increasing Al species content. The existence and dispersion states of Al species in the resultant membrane matrix were further examined by transmission electron microscope and X-ray photoelectron spectrometer. The results indicate the Al species nanoparticles were well dispersed throughout PVDF matrix. Dynamic BSA fouling resistance experiments demonstrate the Al-containing PVDF membranes possess improved separation performances over the pure PVDF membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.09.001DOI Listing

Publication Analysis

Top Keywords

al-containing pvdf
16
situ preparation
8
preparation al-containing
8
pvdf ultrafiltration
8
sol-gel process
8
casting solution
8
pvdf membranes
8
pvdf
7
al-containing
4
ultrafiltration membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!