Background: Three-dimensional (3D)-reconstruction from paraffin embedded sections has been considered laborious and time-consuming. However, the high-resolution images of large object areas and different fields of view obtained by 3D-reconstruction make one wonder whether it can add a new insight into lung adenocarcinoma, the most frequent histology type of lung cancer characterized by its morphological heterogeneity.
Objective: In this work, we tested whether an automated tissue sectioning machine and slide scanning system could generate precise 3D-reconstruction of microanatomy of the lung and help us better understand and define histologic subtypes of lung adenocarcinoma.
Methods: Four formalin-fixed human lung adenocarcinoma resections were studied. Paraffin embedded tissues were sectioned with Kurabo-Automated tissue sectioning machine and serial sections were automatically stained and scanned with a Whole Slide Imaging system. The resulting stacks of images were 3D reconstructed by Pannoramic Viewer software.
Results: Two of the four specimens contained islands of tumor cells detached in alveolar spaces that had not been described in any of the existing adenocarcinoma classifications. 3D-reconstruction revealed the details of spatial distribution and structural interaction of the tumor that could hardly be observed by 2D light microscopy studies. The islands of tumor cells extended into a deeper aspect of the tissue, and were interconnected with each other and with the main tumor with a solid pattern that was surrounded by the islands. The finding raises the question whether the islands of tumor cells should be classified into a solid pattern in the current classification.
Conclusion: The combination of new technologies enabled us to build an effective 3D-reconstruction of resected lung adenocarcinomas. 3D-reconstruction may help us refine the classification of lung adenocarcinoma by adding detailed spatial/structural information to 2D light microscopy evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605532 | PMC |
http://dx.doi.org/10.3233/ACP-2011-0030 | DOI Listing |
Genes (Basel)
January 2025
Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.
TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy.
Prostate cancer (PCa) is a high-prevalence disease usually characterized by metastatic spread to the pelvic lymph nodes and bones and the development of visceral metastases only in the late stages of disease. Positron Emission Tomography (PET) plays a key role in the detection of PCa metastases. Several PET radiotracers are used in PCa patients according to the stage and pathological features of the disease, in particular Ga/F-prostate-specific membrane antigen (PSMA) ligands.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Clinic of Radiology EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, CH, Switzerland.
Lung cancer, the second most common malignancy in both men and women, poses a significant health burden. Early diagnosis remains pivotal in reducing lung cancer mortality. Given the escalating number of computed tomography (CT) examinations in both outpatient and inpatient settings, radiologists play a crucial role in identifying early-stage pulmonary cancers, particularly non-nodular cancers.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Immunology, The Fourth Military Medical University, Xi'an 710032, China.
The tumor microenvironment (TME) plays a crucial role in the progression of lung adenocarcinoma (LUAD). However, understanding its dynamic immune and stromal modulation remains a complex challenge. We utilized the ESTIMATE algorithm to evaluate the immune and stromal components of the LUAD TME from the TCGA database.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan.
Over the past four years, Ga-fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) has been established at a tertiary cancer care facility in Jordan. This retrospective study aims to explore tracer uptake metrics across various epithelial neoplasms, identify diagnostic pitfalls associated with Ga-FAPI PET/CT, and evaluate the influence of Ga-FAPI PET/CT staging results on changes in therapeutic intent compared to gold standard molecular imaging modalities. A total of 48 patients with biopsy-confirmed solid tumors underwent 77 Ga-FAPI PET/CT examinations for molecular imaging assessment, encompassing neoplasms originating from the gastrointestinal tract, head and neck, hepatobiliary system, pancreas, breast, and lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!