A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Power keys: a novel class of topological descriptors based on exhaustive subgraph enumeration and their application in substructure searching. | LitMetric

Power keys: a novel class of topological descriptors based on exhaustive subgraph enumeration and their application in substructure searching.

J Chem Inf Model

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh & McKean Roads, Spring House, Pennsylvania 19477, USA.

Published: November 2011

We present a novel class of topological molecular descriptors, which we call power keys. Power keys are computed by enumerating all possible linear, branch, and cyclic subgraphs up to a given size, encoding the connected atoms and bonds into two separate components, and recording the number of occurrences of each subgraph. We have applied these new descriptors for the screening stage of substructure searching on a relational database of about 1 million compounds using a diverse set of reference queries. The new keys can eliminate the vast majority (>99.9% on average) of nonmatching molecules within a fraction of a second. More importantly, for many of the queries the screening efficiency is 100%. A common feature was identified for the molecules for which power keys have perfect discriminative ability. This feature can be exploited to obviate the need for expensive atom-by-atom matching in situations where some ambiguity can be tolerated (fuzzy substructure searching). Other advantages over commonly used molecular keys are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci200282zDOI Listing

Publication Analysis

Top Keywords

power keys
16
substructure searching
12
novel class
8
class topological
8
keys
5
power
4
keys novel
4
topological descriptors
4
descriptors based
4
based exhaustive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!