Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Data mining algorithms have been used to analyze the infrared multiple photon dissociation (IRMPD) patterns of gas-phase lithiated disaccharide isomers irradiated with either a line-tunable CO(2) laser or a free electron laser (FEL). The IR fragmentation patterns over the wavelength range of 9.2-10.6 μm have been shown in earlier work to correlate uniquely with the asymmetry at the anomeric carbon in each disaccharide. Application of data mining approaches for data analysis allowed unambiguous determination of the anomeric carbon configurations for each disaccharide isomer pair using fragmentation data at a single wavelength. In addition, the linkage positions were easily assigned. This combination of wavelength-selective IRMPD and data mining offers a powerful and convenient tool for differentiation of structurally closely related isomers, including those of gas-phase carbohydrate complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac2017103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!