We studied 1372 LacI-family transcription factors and their 4484 DNA binding sites using machine learning algorithms and feature selection techniques. The Naive Bayes classifier and Logistic Regression were used to predict binding sites given transcription factor sequences and to classify factor-site pairs on binding and non-binding ones. Prediction accuracy was estimated using 10-fold cross-validation. Experiments showed that the best prediction of nucleotide densities at selected site positions is obtained using only a few key protein sequence positions. These positions are stably selected by the forward feature selection based on the mutual information of factor-site position pairs.
Download full-text PDF |
Source |
---|
BMC Biol
January 2025
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
Background: Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation.
Results: Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM.
ACS Appl Mater Interfaces
January 2025
Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.
View Article and Find Full Text PDFEMBO J
January 2025
University of Pennsylvania, School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, PA, 19104, USA.
Homologous recombination (HR) is important for DNA damage tolerance during replication. The yeast Shu complex, a conserved homologous recombination factor, prevents replication-associated mutagenesis. Here we examine how yeast cells require the Shu complex for coping with MMS-induced lesions during DNA replication.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Packaging of DNA into viruses in some cases involves remarkably sophisticated electrical control mechanisms. One example is how the T4 bacteriophage uses an electrostatically driven motor to pump DNA into the viral capsid.
View Article and Find Full Text PDFAtrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!