Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin.

Neurotox Res

Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brasil.

Published: April 2012

Rotenone exposure in rodents provides an interesting model for studying mechanisms of toxin-induced dopaminergic neuronal injury. However, several aspects remain unclear regarding the effects and the accuracy of rotenone as an animal model of Parkinson's disease (PD). In order to counteract these limitations, this study characterized a precise neurotoxin-delivery strategy employing the bilateral intranigral administration protocol of rotenone as a reliable model of PD. We performed bilateral intranigral injections of rotenone (12 μg) and subsequent general activity (1, 10, 20, and 30 days after rotenone) and cognitive (7, 8, 15, and 30 days after rotenone) evaluations followed by neurochemical and immunohistochemical tests. We have observed that rotenone was able to produce a remarkable reduction on the percentage of tyrosine hydroxylase immunoreactive neurons (about 60%) within the substantia nigra pars compacta. Dopamine (DA) was severely depleted at 30 days after rotenone administration, similarly to its metabolites. In addition, an increase in DA turnover was detected at the same time-point. In parallel, striatal serotonin and its metabolite were found to be increased 30 days after the neurotoxic insult, without apparent modification in the serotonin turnover. Besides, motor behavior was impaired, mainly 1 day after rotenone. Furthermore, learning and memory processes were severely disrupted in different time-points, particularly at the training and test session (30 days). We now provide further evidence of a time-dependent neurodegeneration associated to cognitive impairment after the single bilateral intranigral administration of rotenone. Thus, it is proposed that the current rotenone protocol provides an improvement regarding the existing rotenone models of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-011-9278-3DOI Listing

Publication Analysis

Top Keywords

bilateral intranigral
16
rotenone
13
30 days rotenone
12
rotenone administration
8
intranigral administration
8
30 days
5
behavioral neurochemical
4
neurochemical histological
4
histological alterations
4
alterations promoted
4

Similar Publications

Objective: To investigate the effects of cannabidiol (CBD) on emotional and cognitive symptoms in rats with intra-nigral 6-hydroxydopamine (6-OHDA) lesions.

Methods: Adult male Wistar rats received bilateral intranigral 6-OHDA infusions and were tested in a battery of behavioural paradigms to evaluate non-motor symptoms. The brains were obtained to evaluate the effects of CBD on hippocampal neurogenesis.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral β-sitosterol β-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral β-sitosterol β-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.

View Article and Find Full Text PDF

Novel HDAC inhibitors provide neuroprotection in MPTP-induced Parkinson's disease model of rats.

Eur J Pharmacol

November 2023

Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Parkinson's Disease (PD) is the most rapidly growing neurological disorder globally in terms of disability and mortality. While symptomatic treatment is available for PD, there is a critical unmet need for effective disease-modifying therapies. Recently, histone deacetylase inhibitors (HDACi), an important class of epigenetic modulators grabbed significant attention as drug targets for neurodegenerative diseases including PD.

View Article and Find Full Text PDF

Aims: Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders.

View Article and Find Full Text PDF

Metabolic dysfunctions in the intranigral rotenone model of Parkinson's disease.

Exp Brain Res

May 2023

Neurophysiology Laboratory, Department of Physiology, Federal University of Paraná, Setor de Ciências Biológicas, Av. Francisco H. dos Santos s/n, Zip 81.531-990, Curitiba, Paraná, 19031, Brazil.

Parkinson disease (PD) is a chronic neurodegenerative disorder characterized by a progressive loss of dopamine neurons in the substantia nigra pars compacta (SNpc). In the last years, a growing interest to study the relationship between metabolic dysfunction and neurodegenerative disease like PD has emerged. This study aimed to evaluate the occurrence of possible changes in metabolic homeostasis due to intranigral rotenone administration, a neurotoxin that damages dopaminergic neurons leading to motor impairments mimicking those that happen in PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!