Usnic acid, a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken for metabolism and toxicity evaluations of usnic acid in human hepatoblastoma HepG2 cells in culture. The cells were treated with the vehicle control and usnic acid at concentrations of 0-100 µm for 24 h at 37 °C in 5% CO2 . Following the treatment period, the cells were evaluated by biochemical and toxicogenomic endpoints of toxicity that included cytochrome P450 activity, cytotoxicity, oxidative stress, mitochondrial dysfunction and changes in pathway focused gene expression profiles. Usnic acid exposure resulted in increased P450 activity, cytotoxicity, oxidative stress and mitochondrial dysfunction in HepG2 cells. The pathway-focused gene expression analysis resulted in significantly altered expression of six genes out of a total of 84 genes examined. Of the six altered genes, three genes were up-regulated and three genes down-regulated. A marked up-regulation of one gene CCL21 associated with inflammation, one gene CCNC associated with proliferation and carcinogenesis and one gene UGT1A4 associated with metabolism as well as DNA damage and repair were observed in the usnic acid-treated cells compared with the vehicle control. Also a marked down-regulation of one gene CSF2 associated with inflammation and two genes (CYP7A1 and CYP2E1) associated with oxidative metabolic stress were observed in the usnic acid-treated cells compared with the control. The biomarkers used in this study demonstrate the toxicity of usnic acid in human hepatoblastoma HepG2 cells, suggesting an oxidative mechanism of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1721 | DOI Listing |
Plant Physiol Biochem
December 2024
Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:
Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.
View Article and Find Full Text PDFBiofilm
December 2024
Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea.
Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia. Electronic address:
Chem Biodivers
November 2024
Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.
Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Acad. Lavrentjev Ave., 630090 Novosibirsk, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!