We report vibrational predissociation spectra of the four protonated dipeptides derived from glycine and sarcosine, GlyGlyH(+)•(H(2))(1,2), GlySarH(+)•(D(2))(2), SarGlyH(+)•(H(2))(2), and SarSarH(+)•(D(2))(2), generated in a cryogenic ion trap. Sharp bands were recovered by monitoring photoevaporation of the weakly bound H(2) (D(2)) molecules in a linear action regime throughout the 700-4200 cm(-1) range using a table-top laser system. The spectral patterns were analyzed in the context of the low energy structures obtained from electronic structure calculations. These results indicate that all four species are protonated on the N-terminus, and feature an intramolecular H-bond involving the amino group. The large blue-shift in the H-bonded N-H fundamental upon incorporation of a methyl group at the N-terminus indicates that this modification significantly lowers the strength of the intramolecular H-bond. Methylation at the amide nitrogen, on the other hand, induces a significant rotation (~110°) about the peptide backbone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-011-0228-3DOI Listing

Publication Analysis

Top Keywords

intramolecular h-bond
12
characterizing intramolecular
4
h-bond secondary
4
secondary structure
4
structure methylated
4
methylated glyglyh+
4
glyglyh+ predissociation
4
predissociation spectroscopy
4
spectroscopy report
4
report vibrational
4

Similar Publications

The synthesis of a transient cationic phosphaborene [(Mes*)P=B(CAAC)]+ (Mes* = 2,4,6,-trit-tert-butylphenyl, CAAC = cyclic alkylamino carbene) by halide abstraction from the B-brominated analogue is reported. This species was found to undergo rapid and selective intramolecular aliphatic C-H bond activation to yield a phosphinoborenium cation, which undergoes facile deprotonation to give a cyclic base-stabilized phosphaborene. Computational investigation of the mechanism of C-H activation indicates a boron-centred activation route with an exceptionally low barrier of 8 kJ mol-1, followed by a nearly barrierless hydride migration from boron to phosphorus.

View Article and Find Full Text PDF

The grafting of a -(CH)PR moiety on an NHC ligand backbone in the Mn(I) complex [Cp(CO)Mn(IMes)] followed by double deprotonation opens a route to bidentate ligands with extreme electron-donating character. Such remarkable electronic properties can even allow intramolecular sp C-H functionalization in typically inert square-planar Rh(I) dicarbonyl complexes.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.

View Article and Find Full Text PDF

Cooperativity between H-bonding interactions in networks is a fundamental aspect of solvation and self-assembly in molecular systems. The interaction of a series of bisphenols, which make an intramolecular H-bond between the two hydroxyl groups, and quinuclidine was used to quantify cooperativity in three-component networks. The presence of the intramolecular H-bond in the bisphenols was established by using H NMR spectroscopy in solution and X-ray crystallography in the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!