The function of lymphoid organs and immune cells is often modulated by hormones, steroids and neuropeptides produced by the neuroendocrine and immune systems. The thymus intrinsically produces these factors and a comparative analysis of the expression of neuropeptides in the thymus of different species would highlight the evolutionary importance of neuroendocrine interaction in T cell development. In this review, we highlight the evidence which describes the intrathymic expression and function of various neuropeptides and their receptors, in particular somatostatin, substance P, vasointestinal polypeptide, calcitonin gene-related peptide and neuropeptide Y, in mammals (human, rodent) and non-mammals (avian, amphibian and teleost), and conclude that neuropeptides play a conserved role in vertebrate thymocyte development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000329493 | DOI Listing |
Cell Res
February 2025
Department of Surgery, University of Cambridge, Cambridge, UK.
Eur J Immunol
January 2025
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
The T-cell receptor sequences expressed on cells recognizing a specific peptide in the context of a given MHC molecule can be explored for common features that might explain their antigen specificity. However, despite the development of numerous experimental and bioinformatic strategies, the specificity problem remains unresolved. To address the need for additional experimental paradigms, we report here on an in vivo experimental strategy designed to artificially diversify a transgenic TCR by CRISPR/Cas9-mediated mutagenesis of Tcra and Tcrb chain genes.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Molecular Microbiology & Immunology.
Type 1 diabetes (T1D) develops spontaneously despite functional antigen presentation machinery in the thymus and a perceptible central tolerance process. We found that intrathymic enrichment with IL-4 fine tunes signaling through the IL-4/IL-13 heteroreceptor (HR) in early thymic progenitors (ETPs), augments negative selection of self-reactive T cells, sustains a diverse T cell repertoire devoid of clones expressing disease-associated T cell receptor (TCR) genes, and protects the nonobese diabetic (NOD) mouse from T1D. Indeed, optimal IL-4 activates STAT transcription factors to program ETP fate decision toward CD11c+CD8α+ dendritic cells (DCs) agile in negative T cell selection and clonal deletion of diabetogenic T cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2024
Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
Galectin-3 is an endogenous lectin which binds mainly to β-galactosides on the cell surface and extracellular matrix (ECM) glycoproteins. In the thymus, this lectin is constitutively expressed, being involved in thymocyte adhesion, migration, and death. Galectin-3 has been related to type 1 diabetes, an autoimmune disease characterized by pancreatic β-cell destruction mediated by autoreactive T lymphocytes.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)γ protein complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!