The growth behaviour of the oligopyridine derivative 2-phenyl-4,6-bis(6-(pyridine-2-yl)-4-(pyridine-4-yl)pyridine-2-yl)pyrimidine (2,4'-BTP) on Ag(100) in the sub-monolayer regime was investigated by variable temperature scanning tunneling microscopy under ultra-high vacuum conditions. Over the entire coverage range, the molecules are adsorbed in a flat lying configuration, with preferential orientations with respect to the <110> direction of the surface. The azimuth angles are derived using a previously introduced algorithm that fits the positions of the intramolecular N atoms geometrically to the underlying surface lattice ("points-to-lattice fit") [H.E. Hoster et al., Langmuir 2007, 23, 11570], indicating that the orientation of the admolecules and thus of the adllayer structure with respect to the Ag(100) surface lattice is determined by the 2,4'-BTP-Ag(100) interaction, while intermolecular interactions are decisive for the structure of the adlayer. The results will be compared to other adsorption systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp22546d | DOI Listing |
Regen Ther
March 2025
Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China.
In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.
A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.
View Article and Find Full Text PDFNano Lett
January 2025
Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea.
We demonstrate the reversible control of interactions between a local molecular spin, hosted within an iron phthalocyanine (FePc) molecule, and the conduction electrons of a supporting Au(111) surface. Using the tip of a scanning tunneling microscope, we deliberately and reversibly manipulate the adsorption configuration of the molecule relative to the underlying substrate lattice. Different rotation configurations lead to noticeable changes in the differential conductance measured on the FePc molecules.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.
We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, People's Republic of China.
Intentional doping plays a pivotal role in customizing metal halides' electronic and optical features. This work manipulates the incorporation and distribution of Mn in Cu(I) halide by controlling the elemental steps involved in the growth-doping kinetics as well as investigates the localized lattice and electronic structures in different doping configurations. Complementary experimental and theoretical results demonstrate that a uniform and relatively high Mn doping level can be achieved by a step-tailored strategy that encompasses reducing the growth rate of the halide matrix, enhancing the surface adsorption of Mn, and facilitating the incorporation of the dopants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!