Stimulation of AMP-activated protein kinase (AMPK) signaling followed by increase of glucose uptake in L6 myotubes were studied with organic solvent extract of Malva verticillata (MV) seeds. Ethanol extract of M. verticillata seeds (MVE) significantly increased the phosphorylation level of AMPK, acetyl-CoA carboxylase (ACC), and glucose uptake in L6 myotube cells. The MVE was fractionated with n-hexane (MVE-H), chloroform (MVE-C), ethylacetate (MVE-E), n-butanol (MVE-B), and water (MVE-W). MVE-H (150 microgram/ml) showed the highest phosphorylating activity and increased glucose uptake by 2.3-fold. Oral administration of MVE-H (40 mg/kg) for 4 weeks to type 2 diabetic (db/db) mice reduced non-fasting and fasting blood glucose levels by 17.1% and 23.3%, respectively. Phosphorylation levels of AMPK and ACC in the soleus muscle and liver tissue of db/db mice were significantly increased by the administration of MVE-H. MVE-H was further fractionated using preparative HPLC to identify the AMPK-activating compounds. The NMR and GC-MS analyses revealed that β-sitosterol was a major effective compound in MVE-H. Phosphorylation levels of AMPK and ACC, and glucose uptake were significantly increased by the treatment of MVE-S (β-sitosterol) isolated from M. verticillata to L6 cells, and these effects were attenuated by an AMPK inhibitor (Compound C) pretreatment. These results, taken together, demonstrate that increased glucose uptake in L6 myotubes by MVE-H treatment is mainly accomplished through the activation of AMPK. Our finding suggests that the extract isolated from M. verticillata seed would be beneficial for the treatment of metabolic disease including type 2 diabetes and hyperlipidemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1104.04015 | DOI Listing |
Scientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.
Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.
Nat Metab
January 2025
CECAD Excellence Center, University of Cologne, Cologne, Germany.
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!