AI Article Synopsis

  • IL-6, a pro-inflammatory cytokine, plays a significant role in causing tenderness and mechanical pain sensitivity in conditions like tumors, inflammation, and nerve injury.
  • The study investigates the importance of the gp130 signal transducer in pain-sensing neurons (C nociceptors) and its role in maintaining pain sensitivity after tumor induction.
  • Findings reveal that mice lacking gp130 in nociceptors do not maintain heightened pain sensitivity over time, suggesting that gp130 is crucial for long-term pain responses related to cancer and inflammation.

Article Abstract

Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The proinflammatory cytokine interleukin-6 (IL-6) is causally involved in all three pathologies. IL-6 not only regulates innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice. Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term mechanical hypersensitivity associated with cancer, inflammation and nerve injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197546PMC
http://dx.doi.org/10.1186/1744-8069-7-73DOI Listing

Publication Analysis

Top Keywords

signal transducer
16
transducer gp130
16
mechanical hypersensitivity
16
il-6 signal
12
nociceptor sensitization
8
experimental tumor
8
nerve injury
8
mechanical
7
il-6
6
gp130
5

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.

View Article and Find Full Text PDF

Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.

View Article and Find Full Text PDF

Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.

View Article and Find Full Text PDF

Background: The main goal of the study was to find the magnetic resonance imaging (MRI) parameters that optimize contrast between tissue and thermal lesions produced by focused ultrasound (FUS) using T1-weighted (T1-W) and T2-weighted (T2-W) fast spin echo (FSE) sequences.

Methods: FUS sonications were performed in porcine tissue using a single-element FUS transducer of 2.6 MHz in 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!