The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). The polymers were blended at different mixing ratios and the tissue culture plates were coated either by polyblend method or by surface modification method. hMSCs isolated from adult bone marrow were directed to osteoblast differentiation on the coated plates. Our results showed that the tripolymer coating of the tissue culture plate enhanced mineralization as evidenced by calcium quantification exhibiting significantly higher amount of calcium compared to the untreated or individual polymer coated plates. We found that the tripolymer coated plates having a 1:1 mixing ratio of chitosan and collagen type 1, surface modified with hyaluronic acid is an ideal combination to achieve the synergistic effect of these polymers on in vitro osteogenic differentiation of hMSCs. These results thus, establish a novel biomimetic approach of surface modification to enhance osteoblast differentiation and mineralization. Our findings hold great promise in implementing a biomimetic surface coating to improve osteoconductivity of implants and scaffolds for various orthopaedic and bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.09.071DOI Listing

Publication Analysis

Top Keywords

collagen type
12
hyaluronic acid
12
osteogenic differentiation
12
bone marrow
12
tissue culture
12
coated plates
12
tripolymer coating
8
chitosan collagen
8
type hyaluronic
8
differentiation human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!