Spermatogenesis is a highly complex and unique differentiation process. This process involves development of spermatogonia into spermatocytes, formation of haploid spermatids, and maturation of spermatozoa. It features stage- and testis-specific gene expression, mitotic and meiotic divisions, and the histone-protamine transition. The epigenetic modification plays an important role in meiotic recombination, formation of the synaptonemal complex, sister chromatid cohesion, spermiogenesis during postmeiotic stages, gene expression repression, and heterochromatin formation. The mark of the repressive and/or activating histone methylation and acetylation has a defined composition. It not only ensures proper chromosome pairing and successful bivalent segregation but also mediates highly orchestrated expression of meiosis-specific genes. The incorrect histone methylation and/or acetylation during spermatogenesis will directly affect the establishment and maintenance of epigenetic patterns, resulting in abnormal spermatogenic cells and even male infertility. This article is an effort to review the dynamic changes of methylation and acetylation of histones during spermatogenesis, as well as the regulatory mechanism of the enzymes involved in these processes, which provides some basic information for further study of the epigenetic events during spermatogenesis and the prevention of male infertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/sp.j.1005.2011.00939 | DOI Listing |
Theranostics
January 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.
Background: Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells.
Methods: THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0).
Life Sci
January 2025
Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.
View Article and Find Full Text PDFBiol Reprod
January 2025
Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
Transcription activators are said to stimulate gene expression by 'recruiting' coactivators, yet this vague term fits multiple kinetic models. To directly analyze the dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator and the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex within yeast nuclear extract. SAGA readily but transiently binds nucleosome-free DNA without an activator, while chromatin association occurs primarily when an activator is present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!