Spermatogenesis is a highly complex and unique differentiation process. This process involves development of spermatogonia into spermatocytes, formation of haploid spermatids, and maturation of spermatozoa. It features stage- and testis-specific gene expression, mitotic and meiotic divisions, and the histone-protamine transition. The epigenetic modification plays an important role in meiotic recombination, formation of the synaptonemal complex, sister chromatid cohesion, spermiogenesis during postmeiotic stages, gene expression repression, and heterochromatin formation. The mark of the repressive and/or activating histone methylation and acetylation has a defined composition. It not only ensures proper chromosome pairing and successful bivalent segregation but also mediates highly orchestrated expression of meiosis-specific genes. The incorrect histone methylation and/or acetylation during spermatogenesis will directly affect the establishment and maintenance of epigenetic patterns, resulting in abnormal spermatogenic cells and even male infertility. This article is an effort to review the dynamic changes of methylation and acetylation of histones during spermatogenesis, as well as the regulatory mechanism of the enzymes involved in these processes, which provides some basic information for further study of the epigenetic events during spermatogenesis and the prevention of male infertility.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2011.00939DOI Listing

Publication Analysis

Top Keywords

acetylation histones
8
gene expression
8
histone methylation
8
methylation acetylation
8
male infertility
8
[methylation acetylation
4
histones spermatogenesis]
4
spermatogenesis
4
spermatogenesis] spermatogenesis
4
spermatogenesis highly
4

Similar Publications

Targeting KAT7 inhibits the progression of colorectal cancer.

Theranostics

January 2025

Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.

View Article and Find Full Text PDF

Background: Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells.

Methods: THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0).

View Article and Find Full Text PDF

The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.

View Article and Find Full Text PDF

Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†.

Biol Reprod

January 2025

Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear.

View Article and Find Full Text PDF

Transcription activators are said to stimulate gene expression by 'recruiting' coactivators, yet this vague term fits multiple kinetic models. To directly analyze the dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator and the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex within yeast nuclear extract. SAGA readily but transiently binds nucleosome-free DNA without an activator, while chromatin association occurs primarily when an activator is present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!