Detailed tracking of body and leg movements of a freely walking female cricket during phonotaxis.

J Neurosci Methods

Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK.

Published: January 2012

We describe a semi-automated tracking system for insect motion based on commercially available high-speed video cameras and freely available software. We use it to collect detailed three-dimensional kinematic information from female crickets performing free walking phonotaxis towards a calling song stimulus. We mark the insect's joints with small dots of paint and record the movements from underneath with a pair of cameras following the insect as it walks on the transparent floor of an arena. Tracking is done offline, utilizing a kinematic model to constrain the processing. We can obtain the positions and angles of all joints of all legs and six additional body joints, synchronised with stance-swing transitions and the sound pattern, at a 300 Hz frame rate. This data will be used in the further development of models of neural control of phonotaxis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2011.09.011DOI Listing

Publication Analysis

Top Keywords

detailed tracking
4
tracking body
4
body leg
4
leg movements
4
movements freely
4
freely walking
4
walking female
4
female cricket
4
cricket phonotaxis
4
phonotaxis describe
4

Similar Publications

Women-identifying and women+ gender faculty (hereto described as women+ faculty) face numerous barriers to career advancement in medicine and biomedical sciences. Despite accumulating evidence that career development programming for women+ is critical for professional advancement and well-being, accessibility of these programs is generally limited to small cohorts, only offered to specific disciplines, or otherwise entirely unavailable. Opportunities for additional, targeted career development activities are imperative in developing and retaining women+ faculty.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

The traditional method is capable of detecting and tracking stationary and slow-moving targets in a sea surface environment. However, the signal focusing capability of such a method could be greatly reduced especially for those variable-speed targets. To solve this problem, a novel tracking algorithm combining range envelope alignment and azimuth phase filtering is proposed.

View Article and Find Full Text PDF

The retreat of Arctic sea ice has opened new maritime routes, offering faster shipping opportunities; however, these routes present significant navigational challenges due to the harsh ice conditions. To address these challenges, this paper proposes a deep learning-based Arctic ice risk management architecture with multiple modules, including ice classification, risk assessment, ice floe tracking, and ice load calculations. A comprehensive dataset of 15,000 ice images was created using public sources and contributions from the Canadian Coast Guard, and it was used to support the development and evaluation of the system.

View Article and Find Full Text PDF

Muscles and their tendons present a considerable diversity of morphological variations. The aim of this study was to explore variants of muscles and tendons from compartments of the thigh and to raise awareness about potential problems during ultrasound examination. This comprehensive review of the literature was created on the basis of scientific articles sourced from PubMed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!