Adult T-cell leukemia (ATL) is a fatal T-cell malignancy associated with human T-cell leukemia virus type I infection. The aberrant expression of nuclear factor-κB (NF-κB) is considered to contribute to the malignant phenotype and chemo-resistance of ATL cells. Because of the poor prognosis of ATL, the development of new therapeutic strategies is direly needed. In the present study, we show that an IκB kinase 2 (IKK2) inhibitor, IMD-0354, efficiently inhibits the survival of CD4(+) CD25(+) primary ATL cells and prevents the growth of or induces apoptosis of patient-derived ATL cell lines. Assays of transcription with integrated forms of reporter genes revealed that IMD-0354 suppresses NF-κB-dependent transcriptional activity. Moreover, the daily administration of IMD-0354 prevents the growth of tumors in mice inoculated with ATL cells. Our results suggest that targeting IKK2 with a small molecule inhibitor, such as IMD-0354, is an attractive strategy for the treatment of ATL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164137PMC
http://dx.doi.org/10.1111/j.1349-7006.2011.02110.xDOI Listing

Publication Analysis

Top Keywords

inhibitor imd-0354
12
t-cell leukemia
12
atl cells
12
iκb kinase
8
imd-0354 suppresses
8
adult t-cell
8
prevents growth
8
atl
7
imd-0354
5
kinase inhibitor
4

Similar Publications

Background: Cancer cells alter their metabolic phenotypes with nutritional change. Single agent approaches targeting mitochondrial metabolism in cancer have failed due to either dose limiting off target toxicities, or lack of significant efficacy in vivo. To mitigate these clinical challenges, we investigated the potential utility of repurposing FDA approved mitochondrial targeting anthelmintic agents, niclosamide, IMD-0354 and pyrvinium pamoate, to be combined with GLUT1 inhibitor BAY-876 to enhance the inhibitory capacity of the major metabolic phenotypes exhibited by tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance (AMR) is severely limiting the effectiveness of antibiotics, especially against Gram-negative bacteria, making global health increasingly at risk.
  • Researchers highlight that the rising resistance to colistin, a last-line antibiotic for treating multi-drug resistant infections, is particularly concerning.
  • The study presents new adjuvants, including IMD-0354 and novel benzimidazole compounds, which effectively restore colistin sensitivity in resistant bacterial infections in mouse models, showing low toxicity and promising results in reducing bacterial load.
View Article and Find Full Text PDF

Aquaporin (AQP) channels in endometrial cancer (EC) cells are of interest as pharmacological targets to reduce tumor progression. A panel of compounds, including AQP1 ion channel inhibitors (AqB011 and 5-(phenoxymethyl) furan-2-carbaldehyde, PMFC), were used to test the hypothesis that inhibition of key AQPs can limit the invasiveness of low- and high-grade EC cells. We evaluated the effects on transwell migration in EC cell lines (Ishikawa, MFE-280) and primary EC cells established from surgical tissues ( = 8).

View Article and Find Full Text PDF

Background: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear.

View Article and Find Full Text PDF

The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!