Frequency and large T (LT) sequence of JC polyomavirus DNA in oligodendrocytes, astrocytes and granular cells in non-PML brain.

Brain Pathol

Department of Medicine, Monash University, Level Seven, Alfred Centre, Alfred Hospital, Commercial Road, Melbourne, Vic. 3004, Australia.

Published: May 2012

Progressive multifocal leukoencephalopathy (PML) and JCV granular cell neuronopathy occur secondary to JCV polyomavirus (JCV) infection of oligodendrocytes and cerebellar granular cell neurons (CGNs) during immunosuppression. Pure populations of astrocytes, oligodendrocytes, CGNs and microglia from frontal cortex and cerebellum of 17 non-PML patients (9 immunocompetent; 8 immunosuppressed) were isolated by laser capture microdissection (LCM). JCV large T (LT) antigen DNA was detected by triple nested polymerase chain reaction (PCR). Sequence analysis was performed to assess LT gene variation. JCV DNA was detected in oligodendrocytes, astrocytes and CGNs of non-PML brains. The most common site for viral latency was cortical oligodendrocytes (65% of samples analyzed). Immunosuppressed patients were significantly more likely to harbor JCV DNA in CGN populations than immunocompetent patients (P = 0.01). Sequence analysis of the LT region revealed eight novel single nucleotide polymorphisms (SNPs) in four immunosuppressed patients. Of the eight novel SNPs detected, six were silent and two resulted in amino acid changes. JCV DNA is present within cells of the non-PML brain, known to be infected during PML and granular cell neuronopathy. This supports the argument for a brain only reservoir of JCV and supports the hypothesis that reactivation of latent brain JCV may be central to disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057671PMC
http://dx.doi.org/10.1111/j.1750-3639.2011.00538.xDOI Listing

Publication Analysis

Top Keywords

granular cell
12
jcv dna
12
jcv
9
oligodendrocytes astrocytes
8
cells non-pml
8
non-pml brain
8
cell neuronopathy
8
dna detected
8
sequence analysis
8
immunosuppressed patients
8

Similar Publications

Ganglioglioma, a glioneuronal neoplasm, typically presents in adolescents' temporal lobes. While pediatric brainstem gangliogliomas (BSGGs) are well documented, adult BSGGs are limited, resulting in a lack of comprehensive understanding of their pathophysiology and prognosis. A 41-year-old woman who presented with dizziness and numbness in her right upper extremity and right face underwent radiological examination.

View Article and Find Full Text PDF

URINARY BLADDER PARAGANGLIOMA- A NOTEWORTHY, RARE ENTITY.

Acta Endocrinol (Buchar)

January 2025

All India Institute of Medical Science, Department of Pathology & Lab Medicine, Mangalagiri, Guntur, India.

Unlabelled: Urinary Bladder paraganglioma accounts for 0.06% of all bladder tumors and 1% of all pheochromocytoma. Most tumors are localized at the dome or trigone and are unifocal.

View Article and Find Full Text PDF

Background: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by presenting primarily with nephrotic syndrome (NS) are rarely reported.

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!