Antisaccades are directed away from visual targets. Impaired antisaccade generation has been attributed to frontal lobe damage. We studied antisaccades in patients with unilateral focal parietal lobe lesions. Normal subjects (N = 10) instructed to make 10° antisaccades opposite to a 100-ms target flash 10° to the right or left of center made antisaccades in 86.1% of trials. Patients (N = 13) made antisaccades contraversive to their lesions in 55.4% of trials and 50.5% of ipsiversive trials. In other trials, reflexive saccades occurred toward the target flash. Nine patients with imaged lesions overlapping in parietal lobe white matter showed subnormal antisaccade generation. Antisaccades provide a means of measuring voluntary saccade function of the parietal lobes independent of visual guidance. Impaired suppression of reflexive saccades and generation of antisaccades is attributed to disconnection of parietal lobe from frontal lobe ocular motor areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.2011.06178.x | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
Science
January 2025
Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
Precise cortical microstimulation improves tactile experience in brain-machine interfaces.
View Article and Find Full Text PDFScience
January 2025
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!