A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers. | LitMetric

The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead∕cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.3626864DOI Listing

Publication Analysis

Top Keywords

focal adhesions
12
optical tweezers
12
mechanical stress
8
response focal
8
cells
5
measuring integrated
4
integrated cellular
4
mechanical
4
cellular mechanical
4
stress response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!