In silico prediction of the mechanobiological response of arterial tissue: application to angioplasty and stenting.

J Biomech Eng

Trinity Centre for Bioengineering, School of Engineering, University of Dublin, Trinity College, Dublin, Ireland.

Published: August 2011

One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed "restenosis." In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4004492DOI Listing

Publication Analysis

Top Keywords

arterial tissue
12
cell activity
12
smooth muscle
8
muscle cell
8
modeling approach
8
tissue
6
restenosis
5
cell
5
silico prediction
4
prediction mechanobiological
4

Similar Publications

Anomalous aortic origin of a coronary artery (AAOCA) comprises a set of rare congenital abnormalities in the origin or path of the coronary arteries with highly variable clinical implications. This is a pilot feasibility study where we investigated the influence of the anomalous coronary artery inlet architecture on coronary perfusion using coronary blood flow computational simulations to help predict the risk for coronary ischemia in patients with anomalous aortic origin of the right coronary artery (AAORCA) with these types of anomalous coronary artery inlet architectures. We developed a protocol for generating 3D models of patient coronary artery anatomies from an IRB-approved dataset of cardiac CT images of patients with AAORCA at our institution.

View Article and Find Full Text PDF

Dosimetric Planning Comparison for Left Ventricle Avoidance in Non-small Cell Lung Cancer Radiotherapy.

Cureus

December 2024

Physics and Engineering, London Regional Cancer Program, London, CAN.

Introduction: Radiation may unintentionally injure myocardial tissue, potentially leading to radiation-induced cardiac disease (RICD), with the net benefit of non-small cell lung cancer (NSCLC) radiotherapy (RT) due to the proximity of the lung and heart. RTOG-0617 showed a greater reduction in overall survival (OS) comparing higher doses to standard radiation doses in NSCLC RT. VHeart has been reported as an OS predictor in the first- and fifth-year follow-ups.

View Article and Find Full Text PDF

Effect of anemoside B4 on ameliorating cerebral ischemic/reperfusion injury.

Iran J Basic Med Sci

January 2025

Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.

Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

We investigated the association between brachial-ankle pulse wave velocity (PWV) and arterial stiffness and distensibility in the aneurysmal sac of abdominal aortic aneurysm (AAA). Data from 49 patients with AAA from June 2020 to November 2022 at Tokyo Medical University Hospital were retrospectively analyzed. Brachial-ankle PWV (cm/s) was obtained via an automated oscillometric method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!