We investigate the energy transfer dynamics in a donor-acceptor model by developing a time-local master equation technique based on a variational transformation of the underlying Hamiltonian. The variational transformation allows a minimisation of the Hamiltonian perturbation term dependent on the system parameters, and consequently results in a versatile master equation valid over a range of system-bath coupling strengths, temperatures, and environmental spectral densities. While our formalism reduces to the well-known Redfield, Förster and polaron forms in the appropriate limits, in general it is not equivalent to perturbing in either the system-environment or donor-acceptor coupling strengths, and hence can provide reliable results between these limits as well. Moreover, we show how to include the effects of both environmental correlations and non-equilibrium preparations within the formalism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3636081 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA.
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.
We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.
View Article and Find Full Text PDFWe study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China.
This study applied cumulative sum (CUSUM) analysis to evaluate trends in operative time and blood loss, It aims to identify key milestones in mastering extraperitoneal single-site robotic-assisted radical prostatectomy (ss-RARP). A cohort of 100 patients who underwent ss-RARP, performed by a single surgeon at the First Affiliated Hospital of Guangzhou Medical University between March 2021 and June 2023, was retrospectively analyzed. To evaluate the learning curve, the CUSUM (Cumulative Sum Control Chart) technique was applied, revealing the progression and variability over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!