The Renner-Teller (RT) coupled-channel dynamics for the C((1)D)+H(2)(X(1)Σ(g) (+))→CH(X(2)Π)+H((2)S) reaction has been investigated for the first time, considering the first two singlet states ã̃(1)A' and b(1)A'' of CH(2) dissociating into the products and RT couplings, evaluated through the ab initio matrix elements of the electronic angular momentum. We have obtained initial-state-resolved probabilities, cross sections and thermal rate constants via the real wavepacket method for both coupled electronic states. In contrast to the N((2)D)+H(2)(X(1)Σ(g)(+)) system, RT effects tend to reduce probabilities, cross sections, and rate constants in the low energy range compared to Born-Oppenheimer (BO) ones, due to the presence of a repulsive RT barrier in the effective potentials and to long-lived resonances. Furthermore, contrary to BO results, the rate constants have a positive temperature dependence in the 100-400 K range. The two-state RT rate constant at 300 K, lower than the BO one, remains inside the error bars of the experimental value.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3636083DOI Listing

Publication Analysis

Top Keywords

rate constants
12
probabilities cross
8
cross sections
8
nonadiabatic quantum
4
quantum dynamics
4
dynamics c1d+h2→ch+h
4
c1d+h2→ch+h coupled-channel
4
coupled-channel calculations
4
calculations including
4
including renner-teller
4

Similar Publications

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Unlabelled: Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning.

View Article and Find Full Text PDF

Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration ( via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement.

View Article and Find Full Text PDF

Universal kinetic description for the thermal dehydration of sodium carbonate monohydrate powder across different temperatures and water vapor pressures.

Phys Chem Chem Phys

January 2025

Department of Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan.

The thermal dehydration of sodium carbonate monohydrate (SC-MH) exhibits kinetic characteristics that are typical of the thermal decomposition of solids with a reversible nature. One of the characteristics is the physico-geometrical constraints of the reaction due to the heterogeneous reaction feature. Another factor is the considerable impact of the atmospheric and self-generated water vapor on the kinetics.

View Article and Find Full Text PDF

Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!