On-line concentration via Electrokinetic Supercharging (EKS) was used to enhance the sensitivity of the capillary electrophoretic separation of the four flavonoids naringenin, hesperetin, naringin and hesperidin. Separation conditions, including the background electrolyte pH and concentration, the length and choice of terminator and the electrokinetic injection time were optimized. The optimum conditions were: a background electrolyte of 30 mM sodium tetraborate (pH 9.5) containing 5% (v/v) of methanol, electrokinetic injection of the sample (130 s, -10 kV) followed by hydrodynamic injecting of 100 mM 2-(cyclohexylamino)ethanesulfonic acid (CHES) (17 s, 0.5 psi) as terminator, and separation with -20 kV. Under these conditions the four flavonoids could be separated with a sample-to-sample time of 15 min and detection limits from 2.0 to 6.8 ng mL(-1). When compared to a conventional hydrodynamic injection the sensitivity was enhanced between 824 and 1515 times which is 7.6-16 times higher than other CE methods for the on-line concentration of flavonoids. The applicability of the developed method was demonstrated by the detection of the four flavonoids in an aqueous extract of Clematis hexapetala pall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1an15277g | DOI Listing |
Anal Methods
April 2024
Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, Kansas 67260, USA.
Residues of glyphosate (GlyP) and its major degradation product, aminomethylphosphonic acid (AMPA), widely exist in the water system and plant products and thus are also present in the bodies of animals and humans. Although no solid evidence has been obtained, the concern about the cancer risk of GlyP is persistent. The measurement of GlyP and AMPA in trace levels is often needed but lacks readily available analytical approaches with detection sensitivity, accuracy and speed.
View Article and Find Full Text PDFBiomed Chromatogr
June 2020
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P.R. China.
Electrokinetic supercharging, a convenient and powerful online preconcentration technique in capillary electrophoresis, was introduced and evaluated for the determination of two alkaloids, berberine and jatrorrhizine, in mice fecal samples for the first time. The method depended on using a bare fused silica capillary (50 cm × 50 μm i.d.
View Article and Find Full Text PDFElectrophoresis
November 2019
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
Electrokinetic supercharging (EKS) is known as one of the most effective online electrophoretic preconcentration techniques, though pairing with it with mass spectrometry has presented challenges. Here, EKS is successfully paired with ESI-MS/MS to provide a sensitive and robust method for analysis of biogenic amines in biological samples. Injection parameters including electric field strength and the buffer compositions used for the separation and focusing were investigated to achieve suitable resolution, high sensitivity, and compatibility with ESI-MS.
View Article and Find Full Text PDFElectrophoresis
June 2019
Laboratory for the Analysis of Medicines (LAM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
Talanta
May 2018
Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
The World Health Organization (WHO) guideline states that the total arsenic concentration in drinking water must not exceed 10 ppb. However, arsenic toxicity varies significantly, with inorganic arsenic species being more toxic than organic species. Arsenic speciation is therefore important for evaluating the health risks from arsenic-contaminated drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!