Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocytic receptors, mannose 6-phosphate/insulin-like growth II receptor, megalin, and sortilin and demonstrates their drug delivery capabilities for enzyme replacement therapy. Sortilin, a novel α-galactosidase A binding protein, reveals a predominant intracellular expression but also surface expression in the podocyte. The present study provides the rationale for the renal effect of treatment with α-galactosidase A and identifies potential pathways for future non-carbohydrate based drug delivery to the kidney podocyte and other potential affected organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176300PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025065PLOS

Publication Analysis

Top Keywords

fabry disease
8
disease podocyte
8
drug delivery
8
podocyte
6
receptor-mediated endocytosis
4
endocytosis α-galactosidase
4
α-galactosidase human
4
human podocytes
4
podocytes fabry
4
disease injury
4

Similar Publications

Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation procedure for the treatment of Fabry disease: a case report.

Eur Heart J Case Rep

January 2025

Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China.

Background: This is a case report of a patient with Fabry disease (FD). We successfully treated a patient with ventricular septal hypertrophy and left ventricular outflow tract (LVOT) obstruction caused by FD. We report our exclusive new surgery for patients with LVOT obstruction, percutaneous intramyocardial septal radiofrequency ablation (PIMSRA) procedure™ (percutaneous intramyocardial septal radiofrequency ablation).

View Article and Find Full Text PDF

Impact of enzyme replacement therapy on clinical manifestations in females with Fabry disease.

Orphanet J Rare Dis

December 2024

Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany.

Background: The aim of our multicenter study was to investigate the implementation of the European Fabry guidelines on therapeutic recommendations in female patients with Fabry disease (FD) and to analyze the impact of enzyme replacement therapy (ERT) in treated and untreated females.

Results: Data from 3 consecutive visits of 159 female FD patients from 6 Fabry centers were retrospectively analyzed. According to their treatment, patients were separated in 3 groups (untreated, n = 71; newly ERT-treated, n = 47; long-term ERT-treated, n = 41).

View Article and Find Full Text PDF

Background: Fabry disease is a rare X-linked multisystem disease, with progressive proteinuric kidney disease contributing significantly to morbidity and mortality of these patients. Evidence shows that sodium-glucose cotransporter 2 inhibitors (SGLT2Is) can reduce proteinuria and slow progression to end-stage kidney disease in both diabetic and non-diabetic kidney disease.

Aim: Evaluate the effects of SGLT2I on kidney function and albuminuria in patients with Fabry disease.

View Article and Find Full Text PDF

Background: Fabry disease (FD), an X-linked lysosomal disorder, is marked by a lack of alpha-galactosidase A (α-Gal A). Agalsidase beta, a recombinant form of α-Gal A, is fundamental to enzyme replacement therapy for FD but requires close monitoring for adverse events (AEs).

Research Design And Methods: This study retrospectively analyzed the Food and Drug Administration Adverse Event Reporting System (FAERS) database for agalsidase beta-related AEs.

View Article and Find Full Text PDF

Fabry disease (FD, OMIM #301500) is a rare metabolic disorder, X-linked glycosphingolipidosis that is characterized by pathogenic mutations in the GLA (Galactosidase Alpha) gene (OMIM *300644) that result in reduced α-galactosidase A (α-GAL) activity and accumulation of globotriaosylceramide (Gb3) in tissues and organs. Peripheral blood mononuclear cells (PBMCs) were used to generate human induced pluripotent stem cells (hiPSC). UKJi004-A was produced from a healthy donor, whereas UKJi003-A was produced from a patient who had FD with GLA-mutation (IVS6-10G>A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!