Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration.

J Cell Biol

Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.

Published: October 2011

During cotranslational integration of a eukaryotic multispanning polytopic membrane protein (PMP), its hydrophilic loops are alternately directed to opposite sides of the ER membrane. Exposure of fluorescently labeled nascent PMP to the cytosol or ER lumen was detected by collisional quenching of its fluorescence by iodide ions localized in the cytosol or lumen. PMP loop exposure to the cytosol or lumen was controlled by structural rearrangements in the ribosome, translocon, and associated proteins that occurred soon after a nascent chain transmembrane segment (TMS) entered the ribosomal tunnel. Each successive TMS, although varying in length, sequence, hydrophobicity, and orientation, reversed the structural changes elicited by its predecessor, irrespective of loop size. Fluorescence lifetime data revealed that TMSs occupied a more nonpolar environment than secretory proteins inside the aqueous ribosome tunnel, which suggests that TMS recognition by the ribosome involves hydrophobic interactions. Importantly, the TMS-triggered structural rearrangements that cycle nascent chain exposure between cytosolic and lumenal occur without compromising the permeability barrier of the ER membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187712PMC
http://dx.doi.org/10.1083/jcb.201103117DOI Listing

Publication Analysis

Top Keywords

cytosol lumen
12
polytopic membrane
8
structural rearrangements
8
nascent chain
8
membrane
5
transmembrane segments
4
nascent
4
segments nascent
4
nascent polytopic
4
membrane proteins
4

Similar Publications

The structures of the peptide transporters SLC15A3 and SLC15A4 reveal the recognition mechanisms for substrate and TASL.

Structure

December 2024

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:

The solute carrier family 15 members 3 and 4 (SLC15A3 and SLC15A4) are closely related endolysosomal peptide transporters that transport free histidine and certain dipeptides from the lumen to cytosol. Besides, SLC15A4 also functions as a scaffold protein for the recruitment of the adapter TASL for interferon regulatory factor 5 (IRF5) activation downstream of innate immune TLR7-9 signaling. However, the molecular basis for the substrate recognition and TASL recruitment by these membrane proteins is not well understood.

View Article and Find Full Text PDF

Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn PFFs, caused the death of the iNs but not of the parental iPSCs and non-neuronal cells.

View Article and Find Full Text PDF

Colorectal cancer is influenced by genetic mutations, lifestyle factors, and diet, particularly high fat intake, which raises bile acid levels in the intestinal lumen. This study hypothesized that bile acids contribute to tumorigenesis by disrupting ion transport and ATPase activity in the intestinal mucosa. The effects of 3-sulfo-taurolithocholic acid (TLC-S) on ATPase activity were investigated in colorectal cancer samples from 10 patients, using adjacent healthy tissue as controls, and in rodent liver function.

View Article and Find Full Text PDF
Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins.

Plant J

December 2024

Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria.

The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!