One very striking feature of T-cell recognition is the formation of an immunological synapse between a T cell and a cell that it is recognizing. Formation of this complex structure correlates with cytotoxicity in the case of killer (largely CD8(+)) T-cell activity, or robust cytokine release and proliferation in the case of the much longer lived synapses formed by helper (CD4(+)) T cells. Here we have used electron microscopy and 3D tomography to characterize the synapses of antigen-specific CD4(+) T cells recognizing B cells and dendritic cells at different time points. We show that there are at least four distinct stages in synapse formation, proceeding over several hours, including an initial stage involving invasive T-cell pseudopodia that penetrate deeply into the antigen-presenting cell, almost to the nuclear envelope. This must involve considerable force and may serve to widen the search for potential ligands on the surface of the cell being recognized. We also show that centrioles and the Golgi complex are always located immediately beneath the synapse and that centrioles are significantly shifted toward the late contact zone with either B lymphocytes or bone marrow-derived dendritic cells such as antigen-presenting cells, and that there are dynamic, stage-dependent changes in the organization of microtubules beneath the synapse. These data reinforce and extend previous data on cytotoxic T cells that one of the principal functions of the immunological synapse is to facilitate cytokine secretion into the synaptic cleft, as well as provide important insights into the overall dynamics of this phenomenon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193211 | PMC |
http://dx.doi.org/10.1073/pnas.1113703108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!