Protein degradation by the 26S proteasome is a fundamental process involved in a broad range of cellular activities, yet how proteasome activity is regulated remains poorly understood. We report here that ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) is a 26S proteasome phosphatase that regulates nuclear proteasome activity. UBLCP1 directly interacts with the proteasome via its UBL domain and is exclusively localized in the nucleus. UBLCP1 dephosphorylates the 26S proteasome and inhibits proteasome activity in vitro. Knockdown of UBLCP1 in cells promotes 26S proteasome assembly and selectively enhances nuclear proteasome activity. Our results describe the first identified proteasome-specific phosphatase and uncover a unique mechanism for phosphoregulation of the proteasome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219150PMC
http://dx.doi.org/10.1073/pnas.1113170108DOI Listing

Publication Analysis

Top Keywords

26s proteasome
20
proteasome activity
20
proteasome
12
nuclear proteasome
12
ublcp1 26s
8
proteasome phosphatase
8
phosphatase regulates
8
regulates nuclear
8
ublcp1
5
activity
5

Similar Publications

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood.

View Article and Find Full Text PDF

Role of ubiquitin-proteasome pathway in budded virus egress and GP64 surface distribution in Bombyx mori nucleopolyhedrovirus.

J Gen Virol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.

The Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that affects the silkworm, , causing substantial economic losses in sericulture. This study investigates the mechanisms underlying budded virus egress, focusing on the roles of the ubiquitin-proteasome pathway (UPP) machinery. BmNPV produces two virion types: budded virions (BVs) and occlusion-derived virions (ODVs), which differ in their envelope origins and functions.

View Article and Find Full Text PDF

DNA-protein crosslinks (DPCs) are endogenous and chemotherapy-induced genotoxic DNA lesions and, if not repaired, lead to embryonic lethality, neurodegeneration, premature ageing, and cancer. DPCs are heavily polyubiquitinated, and the SPRTN protease and 26S proteasome emerged as two central enzymes for DPC proteolysis. The proteasome recognises its substrates by their ubiquitination status.

View Article and Find Full Text PDF

FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection.

New Phytol

December 2024

Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.

Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!