An essential regulator of gene transcription, nuclear receptor liver receptor homologue 1 (LRH-1) controls cell differentiation in the developing pancreas and maintains cholesterol homeostasis in adults. Recent genome-wide association studies linked mutations in the LRH-1 gene and its up-stream regulatory regions to development of pancreatic cancer. In this work, we show that LRH-1 transcription is activated up to 30-fold in human pancreatic cancer cells compared to normal pancreatic ductal epithelium. This activation correlates with markedly increased LRH-1 protein expression in human pancreatic ductal adenocarcinomas in vivo. Selective blocking of LRH-1 by receptor specific siRNA significantly inhibits pancreatic cancer cell proliferation in vitro. The inhibition is tracked in part to the attenuation of the receptor's transcriptional targets controlling cell growth, proliferation, and differentiation. Previously, LRH-1 was shown to contribute to formation of intestinal tumors. This study demonstrates the critical involvement of LRH-1 in development and progression of pancreatic cancer, suggesting the LRH-1 receptor as a plausible therapeutic target for treatment of pancreatic ductal adenocarcinomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193228 | PMC |
http://dx.doi.org/10.1073/pnas.1112047108 | DOI Listing |
Ann Surg Oncol
January 2025
Hepato-Pancreato-Biliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Discov Oncol
January 2025
Department of Laboratory, the Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China.
Background: Pancreatic cancer (PAC) has a complex tumor immune microenvironment, and currently, there is a lack of accurate personalized treatment. Establishing a novel consensus machine learning driven signature (CMLS) that offers a unique predictive model and possible treatment targets for this condition was the goal of this study.
Methods: This study integrated multiple omics data of PAC patients, applied ten clustering techniques and ten machine learning approaches to construct molecular subtypes for PAC, and created a new CMLS.
mSphere
January 2025
State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Ningning Liu works in the field of fungal infection and cancer progression, with a particular focus on the mechanism of host-pathogen interaction. In this mSphere of influence article, he reflects on how papers entitled "The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL," by B. Aykut, S.
View Article and Find Full Text PDFJ Hepatobiliary Pancreat Sci
January 2025
Department of Gastroenterology, Shizuoka General Hospital, Shizuoka, Japan.
Cureus
January 2025
Hepato-Pancreato-Biliary (HPB) Unit, University Hospital Southampton NHS Foundation Trust, Southampton, GBR.
Background The relationship between physical activity and incident pancreatic cancer is poorly defined, and the evidence to date is inconsistent, largely due to small sample sizes and insufficient incident outcomes. Using the UK Biobank cohort dataset, the association between physical activity levels at recruitment and incident pancreatic ductal adenocarcinoma (PDAC) at follow-up was analysed. Method Physical activity, the key exposure, was quantified using Metabolic Equivalent Task (MET) values and categorised into walking, moderate, and vigorous activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!