Background: Currently, the gold standard to assess the microbiological quality of dialysis water is the determination of heterotrophic plate counts (HPC). The long waiting time of the HPC method and the fact that most bacteria are not culturable on agar plates provokes the search for rapid alternative methods for monitoring the microbiological quality of dialysis water.
Methods: We tested the applicability of total viable counts (TVC) and total direct counts (TDC), determined via solid-phase cytometry and epifluorescence microscopy (EFM), in comparison to the standard HPC determination method in 113 samples from 13 dialysis water treatment units (59 drinking water and 54 dialysis water samples). Additionally, for a set of dialysis water samples (n = 22) endotoxin concentrations were also determined.
Results: TVC showed high correlation with HPC and results were of comparable magnitude for most investigated dialysis water samples [median: 3 cells/colony forming units (CFU) 100 mL(-1)]. However, in one dialysis water sample, HPC values (5800 CFU 100 mL(-1)) were >35-fold lower than TVC values (2.05 × 10(5) cells 100 mL(-1)) indicating severe limits of the HPC method to assess the microbiological quality of dialysis water. For drinking water, TVC (median: 4.8 × 10(4) cells 100 mL(-1)) was on average one order of magnitude higher than HPC (median: 2.5 × 10(3) cells 100 mL(-1)). TDCs (median dialysis water: 1.1 × 10(4) cells 100 mL(-1) and median drinking water: 4.9 × 10(6) cells 100 mL(-1)) were always several orders of magnitude higher than HPC or TVC.
Conclusions: We propose that the TVC/solid-phase cytometry approach is a reliable and rapid alternative to the culture-dependent approach for assessment of the microbiological quality of dialysis water, especially when fast results are needed. TDC determined via EFM lacks sensitivity and reliability for assessing microbial concentrations in low-cell dialysis water samples since the limits of detection and quantification are high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfr471 | DOI Listing |
Membranes (Basel)
January 2025
Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain.
The dialysis membrane based on a hydrophilic polymer (Hydrolink NV) was designed to enhance the movement of adsorbed water at the blood-membrane interface, aiming to achieve antithrombogenic and antifouling effects. This study aimed to assess the performance and albumin loss of the Hydrolink NV dialyzer in hemodialysis (HD) and post-dilution hemodiafiltration (HDF) with different infusion flows (Qis) and compare it with the hydrophilic FX CorAL dialyzer in post-dilution HDF. A prospective study was carried out in 20 patients.
View Article and Find Full Text PDFKidney Res Clin Pract
January 2025
Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
Proactive planning and preparation are critical to the safety of patients on dialysis during emergencies, such as natural disasters, and pandemics, such as coronavirus disease 2019. Patients with end-stage kidney disease are particularly vulnerable to disruptions such as power outages, water shortages, transportation issues, and dialysis center closures because they can result in missed dialysis sessions and severe health deterioration. This study aimed to develop tailored dietary guidelines for Korean patients on hemodialysis by applying the U.
View Article and Find Full Text PDFKidney360
January 2025
Lund University, Skåne University Hospital, Clinical Sciences Lund, Department of Nephrology, Lund, Sweden.
Background: Water retention, ultrafiltration insufficiency, and metabolic complications due to abnormally high glucose concentrations are still common problems in patients treated with peritoneal dialysis. Phloretin, a nonselective inhibitor of facilitative glucose transporter channels (GLUT), has shown to improve water transport and lower glucose absorption in experimental peritoneal dialysis. However, the dose-response relationship remains unknown, and we therefore performed a dose-response study to elucidate the pharmacodynamic properties of intra-peritoneal phloretin therapy.
View Article and Find Full Text PDFChemistry
January 2025
University of Toronto, Chemistry, 80 St George Street, M5S 3H6, Toronto, CANADA.
The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water.
View Article and Find Full Text PDFACS Omega
January 2025
Chemistry Department, Koc University, Sariyer, Istanbul 34450, Turkey.
Silk fibroin (SF), a natural polymer with very desirable physicochemical and biological properties, is an ideal material for crafting biocompatible scaffolds in tissue engineering. However, conventional methods for removing the sericin layer and dissolving SF often involve environmentally harmful reagents and processes, requiring extensive dialysis procedures to purify the fibers produced. Such processes may also damage the surface and bulk properties of the SF produced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!