Mitochondrial transcription factor A (mtTFA/TFAM) is a nucleus-encoded, high-mobility-group-box (HMG-box) protein that regulates transcription of the mitochondrial genome by specifically recognizing light-strand and heavy-strand promoters (LSP, HSP1). TFAM also binds mitochondrial DNA in a non-sequence specific (NSS) fashion and facilitates its packaging into nucleoid structures. However, the requirement and contribution of DNA-bending for these two different binding modes has not been addressed in detail, which prompted this comparison of binding and bending properties of TFAM on promoter and non-promoter DNA. Promoter DNA increased the stability of TFAM to a greater degree than non-promoter DNA. However, the thermodynamic properties of DNA binding for TFAM with promoter and non-specific (NS) DNA were similar to each other and to other NSS HMG-box proteins. Fluorescence resonance energy transfer assays showed that TFAM bends promoter DNA to a greater degree than NS DNA. In contrast, TFAM lacking the C-terminal tail distorted both promoter and non-promoter DNA to a significantly reduced degree, corresponding with markedly decreased transcriptional activation capacity at LSP and HSP1 in vitro. Thus, the enhanced bending of promoter DNA imparted by the C-terminal tail is a critical component of the ability of TFAM to activate promoter-specific initiation by the core mitochondrial transcription machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258160 | PMC |
http://dx.doi.org/10.1093/nar/gkr787 | DOI Listing |
Int J Oral Maxillofac Surg
January 2025
Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address:
Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFViruses
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China.
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!