Decorin developmental expression and function in the early avian embryo.

Int J Dev Biol

Division of Genetics and Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece.

Published: March 2012

Decorin, a proteoglycan, interacts with extracellular matrix proteins, growth factors and receptors. Decorin expression and spatio-temporal distribution were studied by RT-PCR and immunofluorescence, while decorin function was examined by blocking antibodies in the early chick embryo. Decorin was first detectable at stage XIII (late blastula). During gastrulation (stage HH3-4), decorin fluorescence was intense in epiblast cells immediately adjacent to the streak, and in migrating cells. Decorin fluorescence was intense in endoderm and strong at mesoderm-neural plate surfaces at stage HH5-6 (neurula). At stage HH10-11 (12 somites), decorin fluorescence was intense in myelencephalon and then showed distinct expression patterns along the myelencephalon axes by stage HH17. Decorin fluorescence was intense in neural crest cells, dorsal aorta, heart, somite and neuroepithelial cells apposing the somite, nephrotome, gut and in pancreatic and liver primordia. Antibody-mediated inhibition of decorin function affected the head-to-tail embryonic axis extension, indicating that decorin is essential for convergent extension cell movements during avian gastrulation. Decorin was also essential for retinal progenitor cell polarization, neural crest migration, somite boundary formation and cell polarization, mesenchymal cell polarization and primary endoderm displacement to the embryo periphery. The embryonic blood vessels were deformed, the dorsal mesocardium was thinned and the cardiac jelly was abnormally thickened in the heart. Decorin is known to modulate collagen fibrillogenesis, a key mechanism of matrix assembly, and cell proliferation. Decorin also appears to be essential for the coordination of cell and tissue polarization, which is an important feature in organ patterning of the embryo.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.113321nzDOI Listing

Publication Analysis

Top Keywords

decorin fluorescence
16
fluorescence intense
16
decorin
14
cell polarization
12
embryo decorin
8
decorin function
8
neural crest
8
decorin essential
8
cell
6
stage
5

Similar Publications

Decorin suppresses stemness and migration potential of malignant peripheral nerve sheath tumor through inhibiting epidermal growth factor receptor signaling.

Biochim Biophys Acta Mol Basis Dis

June 2024

Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, China. Electronic address:

Cancer stem cells (CSCs) play pivotal roles in the growth, invasion, metastasis, chemo-resistance in malignant peripheral nerve sheath tumor (MPNST). The current characterization of CSCs in MPNST is not complete. Decorin is a critical regulator of microenvironment, but its expression and function in CSCs of MPNST has not been studied.

View Article and Find Full Text PDF

In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions.

View Article and Find Full Text PDF

Lesions in the human anterior cruciate ligament (ACL) are frequent, unsolved clinical issues due to the limited self-healing ability of the ACL and lack of treatments supporting full, durable ACL repair. Gene therapy guided through the use of biomaterials may steadily activate the processes of repair in sites of ACL injury. The goal of the present study was to test the hypothesis that functionalized poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can effectively deliver recombinant adeno-associated virus (rAAV) vectors as a means of overexpressing two reparative factors (transforming growth factor beta-TGF-β and basic fibroblast growth factor-FGF-2) in primary human ACL fibroblasts.

View Article and Find Full Text PDF

Corneal transparency relies on the precise arrangement and orientation of collagen fibrils, made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury.

View Article and Find Full Text PDF

The functional role of decorin in corneal neovascularization in vivo.

Exp Eye Res

June 2021

Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States. Electronic address:

Our earlier decorin (Dcn) gene overexpression studies found that the targeted Dcn gene transfer into the cornea inhibited corneal angiogenesis in vivo using a rabbit model. In this study, we tested the hypothesis that anti-angiogenic effects of decorin in the cornea are mediated by alterations in a normal physiologic balance of pro- and anti-angiogenic factors using decorin deficient (Dcn) and wild type (Dcn) mice. Corneal neovascularization (CNV) in Dcn and Dcn mice was produced with a standard chemical injury technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!