Functional analysis of light-regulated promoter region of AtPolλ gene.

Planta

Department of Chemistry, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata, 700 009 West Bengal, India.

Published: February 2012

Genetic and molecular analyses mainly in Arabidopsis and in some other plants have demonstrated involvement of light signaling in cell cycle regulation. In this report, we show light-mediated activation of the promoter of AtPolλ gene, a homolog of mammalian DNA polymerase λ in Arabidopsis thaliana and an important component of DNA damage repair/recombination machinery in plants. Analyses of the light-mediated promoter activity using various deletion versions of AtPolλ promoter in transformed Arabidopsis and tobacco (Nicotiana tabaccum) plants indicate that a 130-bp promoter region between -536 and -408 of AtPolλ promoter is essential for light-induced regulation of AtPolλ expression. DNA-protein interaction studies reveal that an ATCT-motif and AE-box light-responsive elements in the light-regulated promoter region confer light responsiveness of AtPolλ promoter. DNA-binding analysis has identified a 63-kDa trans-acting protein factor which showed specific binding to ATCT-motif, while another trans-acting factor of ~52 kDa was found to bind specifically to both ATCT and AE-box sequences. The 52-kDa protein has been identified as B3-domain transcription factor by MALDI-TOF/MS analysis. Overall, our results provide novel information on the role of light signaling in regulation of expression of an important component of DNA repair machinery in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-011-1517-6DOI Listing

Publication Analysis

Top Keywords

promoter region
12
atpolλ promoter
12
promoter
8
light-regulated promoter
8
atpolλ gene
8
light signaling
8
component dna
8
machinery plants
8
atpolλ
6
functional analysis
4

Similar Publications

De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield.

Bioresour Bioprocess

January 2025

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.

Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.

View Article and Find Full Text PDF

Novel p.Arg534del Mutation and MTHFR C667T Polymorphism in Fragile X Syndrome (FXS) With Autism Spectrum Phenotype: A Case Report.

Case Rep Genet

January 2025

Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.

Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.

View Article and Find Full Text PDF

Introduction: 5-aminolevulinic acid (5-ALA) fluorescence used in glioma surgery has different intensities within tumors and among different patients, some molecular and external factors have been implicated, but there is no clear evidence analyzing the difference of fluorescence according to glioma molecular characteristics. This study aimed to compare molecular factors of glioma samples with fluorescence intensity to identify potential cofounders and associations with clinically relevant tumor features.

Methods: Tumor samples of high-grade glioma patients operated using 5-ALA for guided resection were included for comparative analysis of fluorescence intensity and molecular features.

View Article and Find Full Text PDF

Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.

View Article and Find Full Text PDF

The Histone Lysine Demethylase KDM7A Contributes to Reward Memory via Fscn1-Induced Synaptic Plasticity in the Medial Prefrontal Cortex.

Adv Sci (Weinh)

January 2025

College of Forensic Medicine, Key Laboratory of National Health Commission for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.

Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!