Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C(4)H(9)•) with oxygen (O(2)). On the calculated potential energy surface, the addition of O(2) to C(4)H(9)• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C(4)H(8), C(2)H(5)• + CH(2)CHOOH, OH• + C(3)H(7)CHO, OH• + cycle-C(4)H(8)O, CH(3)• + CH(3)CHCHOOH, CH(2)OOH• + C(3)H(6). Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C(4)H(9)• + O(2) → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C(4)H(8)O.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-011-1241-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!