A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of the potent greenhouse gas NF3 by reactions with the atmospheric oxidants O(1D), OH and O3. | LitMetric

Nitrogen trifluoride, NF(3), a trace gas of purely anthropogenic origin with a large global warming potential is accumulating in the Earth's atmosphere. Large uncertainties are however associated with its atmospheric removal rate. In this work, experimental and theoretical kinetic tools were used to study the reactions of NF(3) with three of the principal gas-phase atmospheric oxidants: O((1)D), OH and O(3). For reaction (R2) with O((1)D), rate coefficients of k(2)(212-356 K) = (2.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) were obtained in direct competitive kinetics experiments, and experimental and theoretical evidence was obtained for F-atom product formation. These results indicate that whilst photolysis in the stratosphere remains the principal fate of NF(3), reaction with O((1)D) is significant and was previously underestimated in atmospheric lifetime calculations. Experimental evidence of F-atom production from 248 nm photolysis of NF(3) was also obtained, indicating that quantum yields for NF(3) destruction remain significant throughout the UV. No evidence was found for reaction (R3) of NF(3) with OH indicating that this process makes little or no contribution to NF(3) removal from the atmosphere. An upper-limit of k(3)(298 K) < 4 × 10(-16) cm(3) molecule(-1) s(-1) was obtained experimentally; theoretical analysis suggests that the true rate coefficient is more than ten orders of magnitude smaller. An upper-limit of k(4)(296 K) < 3 × 10(-25) cm(3) molecule(-1) s(-1) was obtained in experiments to investigate O(3) + NF(3) (R4). Altogether these results underpin calculations of a long (several hundred year) lifetime for NF(3). In the course of this work rate coefficients (in units of 10(-11) cm(3) molecule(-1) s(-1)) for removal of O((1)D) by n-C(5)H(12), k(6) = (50 ± 5) and by N(2), k(7) = (3.1 ± 0.2) were obtained. Uncertainties quoted throughout are 2σ precision only.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp22230aDOI Listing

Publication Analysis

Top Keywords

cm3 molecule-1
16
molecule-1 s-1
16
nf3
10
atmospheric oxidants
8
oxidants o1d
8
experimental theoretical
8
reaction o1d
8
rate coefficients
8
10-11 cm3
8
evidence f-atom
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!