Background: The safety and clinical utility of MRI at 1.5 T in patients with cardiac implantable devices such as pacemakers (PM) and implantable cardioverter-defibrillators (ICD) have been reported. This study aims to evaluate the extent of artifacts on cardiac magnetic resonance (CMR) in patients with PM and ICD (PM/ICD).

Methods And Results: A total of 71 CMR studies were performed with an established safety protocol in patients with prepectoral PM/ICD. The artifact area around the PM/ICD generator was measured in all short-axis (SA), horizontal (HLA), and vertical long-axis (VLA) SSFP cine planes. The location and extent of artifacts were also assessed in all SA (20 sectors per plane), HLA, and VLA (6 sectors per plane) late gadolinium-enhanced CMR (LGE-CMR) planes. The artifact area on cine CMR was significantly larger with ICD versus PM generators in each plane (P<0.001, respectively). In patients with left-sided ICD or biventricular ICD systems, the percentages of sectors with any artifacts on LGE-CMR were 53.7%, 48.0%, and 49.2% in SA, HLA, and VLA planes, respectively. Patients with left-sided PM or right-sided PM/ICD had fewer artifacts. Anterior and apical regions were severely affected by artifact caused by left-sided PM/ICD generators.

Conclusions: In contrast to patients with right-sided PM/ICD and left-sided PM, the anterior and apical left ventricle can be affected by susceptibility artifacts in patients with left-sided ICD. Artifact reduction methodologies will be necessary to improve the performance of CMR in patients with left sided ICD systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218212PMC
http://dx.doi.org/10.1161/CIRCIMAGING.111.965764DOI Listing

Publication Analysis

Top Keywords

artifacts cardiac
8
cardiac magnetic
8
magnetic resonance
8
pacemakers implantable
8
implantable cardioverter-defibrillators
8
extent artifacts
8
artifact area
8
sectors plane
8
quantitative assessment
4
assessment artifacts
4

Similar Publications

Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.

View Article and Find Full Text PDF

Pulmonary thromboembolism (PTE) is the third most common cause of acute cardiovascular disease, which can lead to high morbidity and mortality if left untreated. Anatomical and electrophysiological variations and obesity may complicate timely diagnosis and delay required management. While computed tomography pulmonary angiography (CTPA) remains the most accurate diagnostic tool, initial assessments using electrocardiography (ECG) or echocardiography can be helpful in early suspicion.

View Article and Find Full Text PDF

Background: The scanning trigger threshold affects image quality. The aim of this study was to investigate the effect of different scanning trigger thresholds on brain computed tomography angiography (CTA) image quality.

Methods: In this prospective study, 80 patients undergoing brain CTA examinations with dual-layer CT (DLCT) were randomly divided into group A and group B, with 40 patients in each group.

View Article and Find Full Text PDF

Cardiovascular imaging in children with cardiac implantable electronic devices.

Pediatr Radiol

January 2025

Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.

The number of children with cardiac implantable electronic devices (CIEDs) is increasing at a time of rapid growth in cardiac magnetic resonance (MR) and cardiac computed tomography (CT) utilization. The presence of CIEDs poses challenges with respect to imaging safety and quality. A thoughtful approach to cardiovascular imaging in patients with CIEDs begins with an awareness of the clinical indications to determine the most appropriate imaging modality.

View Article and Find Full Text PDF

ROBUST OUTER VOLUME SUBTRACTION WITH DEEP LEARNING GHOSTING DETECTION FOR HIGHLY-ACCELERATED REAL-TIME DYNAMIC MRI.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.

Real-time dynamic MRI is important for visualizing time-varying processes in several applications, including cardiac imaging, where it enables free-breathing images of the beating heart without ECG gating. However, current real-time MRI techniques commonly face challenges in achieving the required spatio-temporal resolutions due to limited acceleration rates. In this study, we propose a deep learning (DL) technique for improving the estimation of stationary outer-volume signal from shifted time-interleaved undersampling patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!