The ability to reconstruct muscle activity time series from electroencephalography (EEG) may lead to drastic improvements in brain-machine interfaces (BMIs) by providing a means for realistic continuous reproduction of dexterous movements in human beings. However, it is considered difficult to isolate signals related to individual muscle activities from EEG because EEG sensors record a mixture of signals originating from many cortical regions. Here, we challenge this assumption by reconstructing agonist and antagonist muscle activities (i.e. filtered electromyography (EMG) signals) from EEG cortical currents estimated using a hierarchical Bayesian EEG inverse method. Results of 5 volunteer subjects performing isometric right wrist flexion and extension tasks showed that individual muscle activity time series, as well as muscle activities at different force levels, were well reconstructed using EEG cortical currents and with significantly higher accuracy than when directly reconstructing from EEG sensor signals. Moreover, spatial distribution of weight values for reconstruction models revealed that highly contributing cortical sources to flexion and extension tasks were mutually exclusive, even though they were mapped onto the same cortical region. These results suggest that EEG sensor signals were reasonably isolated into cortical currents using the applied method and provide the first evidence that agonist and antagonist muscle activity time series can be reconstructed using EEG cortical currents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2011.08.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!