Endothelial dysfunction is associated with the formation of peroxynitrite, described to be toxic. Recent data also suggests that peroxynitrite is able to activate the protective Nrf2 pathway and/or the unfolded protein response (UPR). The aim of our work was to study the response of human endothelial cells to 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, and to highlight the possible protective roles of Nrf2 or the UPR pathway in this response. Immortal and primary human umbilical vein endothelial cells were exposed to SIN-1. SIN-1 incubation led to Nrf2 activation and to the overexpression of Nrf2-regulated genes, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1. We also demonstrated that this defensive response protected cells against cell death induced by serum starvation, by reducing apoptosis (monitored by caspase-3 activity and DNA fragmentation) and favoring autophagosome formation, as evidenced by LC3-II accumulation. Interestingly, we observed an activation of the UPR, with a rapid and significant overexpression of CHOP in serum starved cells stimulated with SIN-1. While siRNA mediated knockdown of CHOP had no effect on DNA fragmentation, the invalidation of Nrf2 or HO-1 by siRNA strongly increased DNA fragmentation, but also reinforced the SIN-1-induced LC3-II accumulation. This study shows that peroxynitrite, at least at sublethal concentrations and within a narrow concentration range, could exert protective effects on endothelial cells by modulating the balance between autophagy and apoptosis, through Nrf2-dependent pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2011.09.002 | DOI Listing |
Circ Res
January 2025
Department of Integrative Physiology, University of Colorado Boulder (S.D., K.O.M., K.R.L., K.H.A., D.H.C., K.A.F., D.R.S., M.J.R.).
Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.
View Article and Find Full Text PDFFront Oncol
January 2025
Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.
Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.
Regen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China.
The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!