In this study, enzymatic surface modification of polyacrylonitrile was studied using nitrile metabolizing enzyme of Amycolatopsis sp. IITR 215. During enzymatic treatment of polyacrylonitrile at pH of 5.8 and 7, it was observed that the conversion of cyano group to carboxylic acid at pH 5.8 was three times higher than at pH 7. This difference in enzymatic treatment efficiency was explained by studying the differences in adsorption profiles of nitrile hydratase and amidase on polyacrylonitrile at pH of 5.8 and 7. Adsorption profiles were determined by monitoring the unbound activities of these two enzymes in the supernatant. From the specific activity profiles of bound nitrile hydratase and amidase it was concluded that more specific binding of nitrile hydratase was observed at pH 5.8 as compared to pH 7. In case of amidase, optimum adsorption was obtained at pH 5.8 within 5h whereas in case of pH 7 it was obtained within 20 h. Thus at pH 7, sequential adsorption of nitrile hydratase and amidase was observed and this adsorption profile was similar to the Vroman effect reported during plasma protein adsorption at solid-liquid interface. Ideally, specific nitrile hydratase adsorption followed by sequential adsorption of amidase may enhance higher conversion of cyano group to carboxylic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2011.08.025DOI Listing

Publication Analysis

Top Keywords

nitrile hydratase
24
hydratase amidase
16
amidase polyacrylonitrile
8
surface modification
8
enzymatic treatment
8
conversion cyano
8
cyano group
8
group carboxylic
8
carboxylic acid
8
adsorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!