Variation in the organic matter content associated with suspended particulate matter (SPM) is an often overlooked component of carbon cycling within freshwater riverine systems. The potential biogeochemical reactivity of particulate organic carbon (POC) that affect its interactions and fate, i.e. respired and lost to the atmosphere along river continua or ultimately exported to estuarine and oceanic pools was assessed. Eleven contrasting sites draining nested catchments (5-1837 km(2)) in the River Dee basin, NE Scotland were sampled during summer 2008 to evaluate spatio-temporal variations in quantity and quality (biogeochemical reactivity) of SPM during relatively low flow conditions. Mean SPM concentrations increased from 0.21 to 1.22 mg L(-1) between the uppermost and lowest mainstem sites. Individually, POC concentrations ranged from 0.08 to 0.55 mg L(-1) and accounted for ca. 3-15% of total aqueous organic carbon transported. The POC content was partitioned into autotrophic (2.78-73.0 mg C g(-1) SPM) and detrital (119-388 mg C g(-1) SPM) biomass carbon content. The particulate respired CO(2)-C as a % of the total carbon associated with SPM, measured by MicroResp™ over 18 h, varied in recalcitrance from 0.49% at peat-dominated sites to 3.20% at the lowermost mainstem site. Significant (p<0.05) relationships were observed between SPM biogeochemical reactivity measures (% respired CO(2)-C; chlorophyll α; bioavailable-phosphorus) and arable and improved grassland area, associated with increasing biological productivity downstream. Compositional characteristics and in-stream processing of SPM appear to be related to contributory land use pressures, that influence SPM characteristics and biogeochemistry (C:N:P stoichiometry) of its surrounding aqueous environment. As moorland influences declined, nutrient inputs from arable and improved grasslands increasingly affected the biogeochemical content and reactivity of both dissolved and particulate matter. This increases the potential for recycling of the organic matter that is either transported from upstream or entering further along the riverine continuum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2011.08.048DOI Listing

Publication Analysis

Top Keywords

biogeochemical reactivity
12
suspended particulate
8
particulate matter
8
dee basin
8
basin scotland
8
organic carbon
8
g-1 spm
8
spm
6
carbon
5
reactivity suspended
4

Similar Publications

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

January 2025

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

A Novel System for Simultaneous Real-Time Determination of N-Enriched Ammonia, Hydroxylamine, Nitrite, and Nitrate.

Anal Chem

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China.

Ammonium (NH), hydroxylamine (NHOH), nitrite (NO), and nitrate (NO) account for the most important reactive nitrogen (N) species in the N cycle, playing a key role in N elimination and N retention, as well as the production of nitrogenous trace gases. However, it is still challenging to fulfill simultaneous real-time determination of all four N compounds enriched in N. This study successfully established a novel system by coupling an utomatic imultaneous ample reparation unit to a embrane nlet ass pectrometer (4n-ASSP-MIMS) for rapid online N fraction analysis of all four key compounds in the N cycle.

View Article and Find Full Text PDF

Production of Reactive Oxygen Species during Redox Manipulation and Its Potential Impacts on Activated Sludge Wastewater Treatment Processes.

Environ Sci Technol

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China.

Reactive oxygen species (ROS) are ubiquitous in redox-fluctuating environments, exerting profound impacts on biogeochemical cycles. However, whether ROS can be generated during redox manipulation in activated sludge wastewater treatment processes (AS-WTPs) and the underlying impacts remain largely unknown. This study demonstrates that ROS production is ubiquitous in AS-WTPs due to redox manipulation and that the frequency and capacity of ROS production depend on the operating modes.

View Article and Find Full Text PDF

Modeling microplastic transport through porous media: Challenges arising from dynamic transport behavior.

J Hazard Mater

November 2024

Water, Energy, and Environmental Engineering, University of Oulu, Finland. Electronic address:

Modelling microplastic transport through porous media, such as soils and aquifers, is an emerging research topic, where existing hydrogeological models for (reactive) solute and colloid transport have shown limited effectiveness thus far. This perspective article draws upon recent literature to provide a brief overview of key microplastic transport processes, with emphases on less well-understood processes, to propose potential research directions for efficiently modeling microplastic transport through the porous environment. Microplastics are particulate matter with distinct physicochemical properties.

View Article and Find Full Text PDF

Inertia-induced mixing and reaction maximization in laminar porous media flows.

Proc Natl Acad Sci U S A

December 2024

Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455.

Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. Porous media flows are generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!