The mammalian ste20-like kinase (MST) pathway is important in the regulation of apoptosis and cell cycle and emerges as a novel tumor suppressor pathway. MST-induced phosphorylation of Salvador homolog 1 (SAV1), which is a scaffold protein, has not been evaluated in detail. We performed a mass spectrometric analysis of the SAV1 protein that was co-expressed with MST2. Phosphorylation was detected at Thr-26, Ser-27, Ser-36 and Ser-269. Although single or double mutations had little effects, the mutation of all four residues in SAV1 to Ala (SAV1-4A) had inhibitory effects on the MST pathway. MST2-mediated induction of SAV1-4A protein levels, SAV1-4A interaction with MST2 and the self-dimerization of SAV1-4A were weaker compared to those of wild-type SAV1. SAV1-4A inhibited MST2- and K-RasG12V-induced cell death of MCF7 cells. These results suggest that MST-mediated phosphorylation of four residues within SAV1 may be important in the induction of cell death by the MST pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5483/bmbrep.2011.44.9.584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!