Cladophialophora is a genus of asexual black yeast-like fungi with one-celled, hydrophobic conidia which is predicted to have teleomorphs in the ascomycete genus Capronia, a member of the order Chaetothyriales. Cladophialophora species are relatively frequently involved in human disease ranging from mild cutaneous lesions to cerebral abscesses. Although the natural niche outside humans is unknown for most opportunistic Cladophialophora species, the fungi concerned are rarely isolated from environmental samples such as dead plant material, rotten wood, or soil. The objective of the present paper is to describe a novel species of Cladophialophora which was isolated from soil polluted with benzene, toluene, ethylbenzene, and xylene (BTEX). It proved to be able to grow with toluene and other related alkylbenzenes as its sole carbon and energy source. This strain is of interest for the biodegradation of toluene and other related xenobiotics under growth limiting conditions, particularly in air biofilters, dry and/or acidic soil. A preliminary genetic analysis using multilocus sequencing typing (MLST) and amplified fragments length polymorphism (AFLP) showed that this fungus was closely related to the pathogenic species Cladophialophora bantiana, sharing a C. bantiana-specific intron in SSU rDNA. However, it was unable to grow at 40°C and proved to be non-virulent in mice. The clear phylogenetic and ecophysiological delimitation of the species is fundamental to prevent biohazard in engineered bioremediation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2011.04.005 | DOI Listing |
J Nanobiotechnology
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Toronto, Toronto, ON, Canada.
As the global quest for sustainable energy keeps rising, exploring novel efficient and practical photocatalysts remains a research and industrial urge. Particularly, metal organic frameworks were proven to contribute to various stages of the carbon cycle, from CO capture to its conversion. Herein, we report the photo-methanation activity of three isostructural, nickel-based metal organic frameworks incorporating additional niobium, iron, and aluminum sites, having demonstrated exceptional CO capture abilities from thin air in previous reports.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
Accurate and reliable quantification of disease-related biomolecules is essential for clinical diagnosis. In this study, a novel electrochemical approach is developed based on a target triggered DNA nanostructural switch from a hairpin dimer to a double-stranded wheel. During the process, electrochemical species get closer to the electrode interface, and the multiple intramolecular strand displacements are beneficial to low abundant target analysis.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!