Porous Fe3O4 nanoparticles: synthesis and application in catalyzing epoxidation of styrene.

J Colloid Interface Sci

Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: December 2011

A facile route was employed to synthesize porous magnetite via reaction of FeCl(3)·6H(2)O with N(2)H(4)·H(2)O in ethylene glycol without any structure-directing agent. The resultant Fe(3)O(4) particles were characterized by transmission electron microscopy, N(2) adsorption, X-ray photoelectron spectroscopy, and thermal gravimetric analysis. It was demonstrated that the particle size varied in the range of 40-220 nm, and the pore size of particles was centered around 2 nm. The gases produced in the formation process of the particles played key role in the formation of the porous structure. The obtained porous magnetite was used as support to immobilize Au nanoparticles with size less than 2 nm with the assistance of L-cysteine. The as-prepared Fe(3)O(4) particles can effectively catalyze epoxidation of styrene, and the immobilization of Au nanoparticles on the Fe(3)O(4) support significantly improved the activity of the catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.08.066DOI Listing

Publication Analysis

Top Keywords

epoxidation styrene
8
porous magnetite
8
fe3o4 particles
8
porous
4
porous fe3o4
4
fe3o4 nanoparticles
4
nanoparticles synthesis
4
synthesis application
4
application catalyzing
4
catalyzing epoxidation
4

Similar Publications

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.

View Article and Find Full Text PDF

Heterogeneous photoelectrocatalysis systems have recently seen significant growth in organic transformations, but are limited by the inherent physicochemical properties of electrode materials. To enhance selectivity in these processes, we propose an innovative advancement in the rational design of photoanodes. Specifically, we incorporated cobalt porphyrin co-catalysts with confined Co sites onto bismuth vanadate films as a photoanode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!