Mass spectrometric-based quantitative proteomics using SILAC.

Methods Enzymol

Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, Manchester, United Kingdom.

Published: January 2012

One of the main goals of comparative cell signaling analyses is the characterization of protein changes between different biological samples, either globally or by targeting specific proteins of interest. Highly accurate and precise strategies are thus required for the relative quantification of proteins extracted from two or more different cell populations. Stable isotope labeling with amino acids in cell culture (SILAC) is a general method for mass spectrometric quantitative proteomics based on metabolic incorporation of stable isotope-labeled amino acids into the cellular protein pool. This method has been applied with great success to a variety of quantitative proteomics problems aimed at gaining further insight into cell signaling pathways. In this chapter, we describe how SILAC can be used for the elucidation of cellular mechanisms, including temporal proteome profiling and the quantitative analysis of the extent of specific posttranslational modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-385118-5.00008-6DOI Listing

Publication Analysis

Top Keywords

quantitative proteomics
12
cell signaling
8
amino acids
8
mass spectrometric-based
4
quantitative
4
spectrometric-based quantitative
4
proteomics silac
4
silac main
4
main goals
4
goals comparative
4

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition.

J Proteome Res

January 2025

Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.

Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.

View Article and Find Full Text PDF

Quorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea.

View Article and Find Full Text PDF

Unlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!