Carbonyl-ene reactions, which involve C-C bond formation, are essential in many chemical syntheses. The formaldehyde-propene reaction catalyzed by several of the group 11 metal cations, Cu(+), Ag(+), and Au(+) exchanged on the faujasite zeolite (metal-FAU) has been investigated by density functional theory at the M06-L/6-31G(d,p) level. The Au-FAU exhibits a higher activity than the others due to the high charge transfer between the Au and the reactant molecules, even though it is located at a negatively charged site of the zeolite. This site enables it to compensate for the charge of the Au(+) ion. The NBO analysis reveals that the 6s orbital of the Au atom plays an important role, inducing a charge on the probe molecules. Moreover, the effect of the zeolite framework makes the Au-FAU more active than the others by stabilizing the high charge induced transition structure. The activation energy of the reaction catalyzed by Au-FAU is 13.0 kcal/mol whereas that of Cu and Ag-FAU is found to be around 17 kcal/mol. The product desorption needs to be improved for Au-FAU; however, we suggest that catalysts with high charge transfer might provide a promising activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp205985v | DOI Listing |
Adv Clin Chem
January 2025
Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.
View Article and Find Full Text PDFJ Struct Biol
January 2025
CEMES-CNRS, Université de Toulouse, I3EM Team, 29 rue JeanneMarvig B.P, 94347 31055 Toulouse, France. Electronic address:
Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!