Exploration of initiation of chemistry in materials is especially challenging when several coexisting chemical mechanisms are possible and many reactions' products are produced. It is even more difficult for complex materials, such as molecular, supramolecular, and hierarchical materials and systems. A strategy to draw a complete picture of the earliest stages of rapid decomposition reactions in molecular materials is presented in this study. The strategy is based on theoretical and computational modeling of chemical decomposition reactions in the gaseous and crystalline molecular material that has been performed by means of combined density functional theory and transition state theory. This study reveals how a crystalline field affects materials chemical degradation. We also demonstrate how incomplete results, which are often used due to difficulties in obtaining comprehensive data, can lead to erroneous conclusions and predictions. We discuss our approach in the context of the obtained reaction energies, activation barriers, structures of transition states, and reaction rates with the example of a representative molecular material, β-HMX, which tends to decompose violently with large energy release upon an external perturbation. The performed analysis helps to provide a consistent interpretation of available experimental data. The article illustrates that the complete picture of decomposition reactions of complex molecular materials, while theoretically challenging and computationally demanding, is possible and even practical at this point in time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp202733d | DOI Listing |
Adv Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia.
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFSmall Methods
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.
Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!