The perception of odor and flavor of food is a complicated physiological and psychological process that cannot be explained by simple models. Quantitative descriptive analysis is a technique used to describe sensory features. Nevertheless, the availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. In this frame, we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In particular, we have used an NMR metabolomic approach that allowed us to differentiate the analyzed samples based on their chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR might be a very useful tool for the characterization of sensory features of tomatoes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf203803q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!