A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Friction force spectroscopy as a tool to study the strength and structure of salivary films. | LitMetric

Friction force spectroscopy as a tool to study the strength and structure of salivary films.

Langmuir

Biomedical Laboratory Science and Technology, Faculty of Health and Society, Malmoe University, 20506 Malmoe, Sweden.

Published: November 2011

In this work, we employ atomic force microscopy based friction force spectroscopy to study the strength and structure of salivary films. Specifically, films formed on model hydrophobic (methylated silica) and hydrophilic (clean silica) substrata have been studied in water at pHs in the range 3.3-7. Results reveal that films formed on both types of substrata can be described in terms of two different fractions, with only one of them being able to diffuse along the underlying substrata. We also show how the protective function of the films is reduced when the pH of the surrounding medium is lowered. Specifically, lowering of pH causes desorption of some components of the films formed on hydrophobic methylated surfaces, leading to weaker layers. In contrast, at low pHs, saliva no longer forms a layer on hydrophilic silica surfaces. Instead, an inhomogeneous distribution of amorphous aggregates is observed. Our data also suggest that hydrophobic materials in the oral cavity might be more easily cleaned from adsorbed salivary films. Finally, reproducible differences are observed in results from experiments on films from different individuals, validating the technique as a tool for clinical diagnosis of the resistance to erosion of salivary films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la202870cDOI Listing

Publication Analysis

Top Keywords

salivary films
16
films formed
12
films
9
friction force
8
force spectroscopy
8
study strength
8
strength structure
8
structure salivary
8
hydrophobic methylated
8
spectroscopy tool
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!