Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, we identified a new Vascular Endothelial Growth Factor (VEGF)-A(165)-induced gene Phactr-1, (Phosphatase Actin Regulator-1). We reported that Phactr-1 gene silencing inhibited tube formation in human umbilical endothelial cells (HUVECs) indicating a key role for Phactr-1 in tubulogenesis in vitro. In this study, we investigated the role of Phactr-1 in several cellular processes related to angiogenesis. We found that neuropilin-1 (NRP-1) and VEGF-R1 depletion inhibited Phactr-1 mRNA expression while NRP-2 and VEGF-R2 depletion had no effect. We described a new interaction site of VEGF-A(165) to VEGF-R1 in peptides encoded by exons 7 and 8 of VEGF-A(165). The specific inhibition of VEGF-A(165) binding on NRP-1 and VEGF-R1 by ERTCRC and CDKPRR peptides decreased the Phactr-1 mRNA levels in HUVECs indicating that VEGF-A(165)-dependent regulation of Phactr-1 expression required both NRP-1 and VEGF-R1 receptors. In addition, upon VEGFA(165)-stimulation Phactr-1 promotes formation and maintenance of cellular tubes through NRP-1 and VEGFR1. Phactr-1 was previously identified as protein phosphatase 1 (PP1) α-interacting protein that possesses actin-binding domains. We showed that Phactr-1 depletion decreased PP1 activity, disrupted the fine-tuning of actin polymerization and impaired lamellipodial dynamics. Taken together our results strongly suggest that Phactr-1 is a key component in the angiogenic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2011.09.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!