Genetic organization and molecular characterization of secA2 locus in Listeria species.

Gene

Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.

Published: December 2011

The translocation of proteins across the bacterial cell wall is carried out by the general secretory (Sec) system. Most bacteria have a single copy of the secA gene, with the exception of a few Gram-positive bacteria, which have an additional copy of secA, designated secA2. secA2 is present in Listeria monocytogenes and is responsible for secretion and translocation of several proteins including virulence factors; however, little is known about the secA2 gene and its genetic organization in nonpathogenic members of the genus Listeria. The goal of this study was to determine the presence of secA2 locus and analyze the genetic relatedness among pathogenic and nonpathogenic Listeria species. Cloning experiments revealed that secA2 is present in all analyzed pathogenic (L. monocytogenes and L. ivanovii) and nonpathogenic (L. welshimeri, L. innocua, L. seeligeri, L. grayi and L. marthii) Listeria species except L. rocourtiae. Likewise, SecA2 transcripts were also detected in all species. Sequence analysis further revealed that 2331 nucleotides (776 amino acids) are conserved in L. monocytogenes, L. welshimeri, L. innocua and L. marthii. Three nucleotides are deleted in L. ivanovii and L. seeligeri and six in L. grayi, resulting in amino acid counts of 775, 775 and 774, respectively. secA2 is flanked upstream by iap (encoding p60) and downstream by a putative membrane protein (lmo0583, lmo f2365_0613) in all analyzed Listeria species, demonstrating conserved genetic organization of the secA2 locus in pathogenic and nonpathogenic species. Deletion of secA2 in L. innocua impaired accumulation of SecA2 substrate, N-acetyl muramidase (NamA) in the cell wall, providing evidence for the presence of functional SecA2 in nonpathogenic Listeria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2011.08.015DOI Listing

Publication Analysis

Top Keywords

listeria species
16
genetic organization
12
seca2
12
seca2 locus
12
translocation proteins
8
cell wall
8
copy seca
8
pathogenic nonpathogenic
8
nonpathogenic listeria
8
welshimeri innocua
8

Similar Publications

Introduction: In 2022-2023, examinations were carried out for the presence of a pathogenic bacterium in ready-to-eat (RTE) vegetable products (sprouts and vegetable mixtures and salads) sold for immediate consumption in retail shops located in Lublin, eastern Poland. The identification of strains were performed according to the Polish Standard and accomplished with the Microgen Listeria-ID System.

Results: A high prevalence of infections was found in the unprocessed sprouts of plants belonging to the cabbage (Brassicaceae) family - kale (30.

View Article and Find Full Text PDF

CLEC12B is a C-type lectin receptor involved in the inhibition of natural killers-mediated cytotoxicity. We have previously shown that CLEC12B is predominantly expressed on melanocytes, inhibits melanin production and pigmentation as well as proliferation of melanoma. To date, the role of CLEC12B in skin immunity is unknown.

View Article and Find Full Text PDF

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Bacteriophages (phages) have a great potential to target specifically foodborne bacterial pathogens, particularly in packaging materials. However, incorporating phages into packaging surfaces requires stabilizing their structure and maintaining their infectivity during the papermaking process. In this study, several coating formulations containing various ratios of carboxymethyl cellulose, cationic starch, and glycerol were applied to a base paper to assess phage stability.

View Article and Find Full Text PDF

Foeniculum vulgare Miller bracts, revalorization of a local food waste.

Sci Rep

December 2024

Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy.

This research aims at the valorization of fennel by-products from the Campania region (Southern Italy). A phytochemical characterization of the hydroalcoholic extracts (HEs) and of the essential oils (EOs) from edible and non-edible parts (waste) of Foeniculum vulgare Mill. was carried out using HRESIMS and GC-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!